

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: III

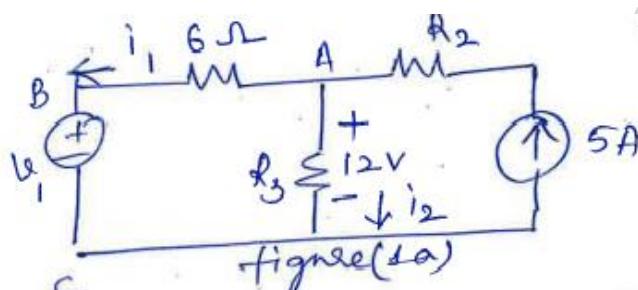
Branch: ECE / ML

Duration: 3 hrs.

Course Code: 22ES3PCNAL

Max Marks: 100

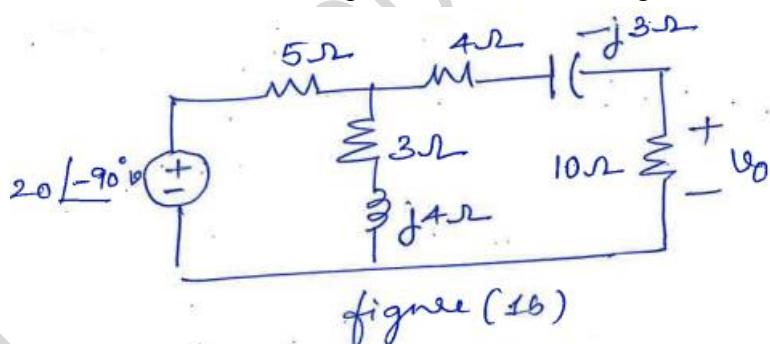
Course: Network Analysis


Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

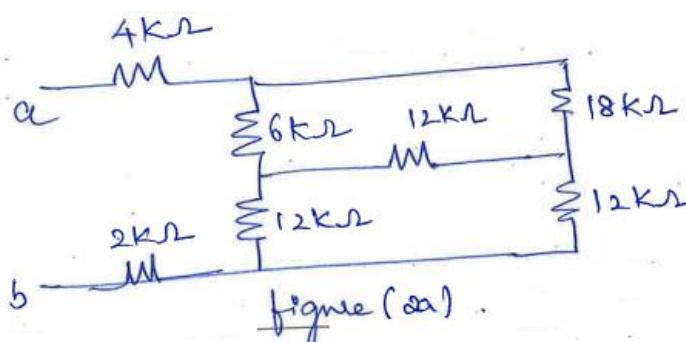
1 a)


10

For the circuit shown in figure(1a) find i_1 and v_1 given $R_3=6\Omega$

b)

10



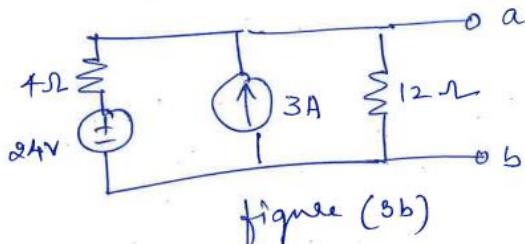
Calculate V_0 in the circuit shown in figure(1b) using source transformation.

OR

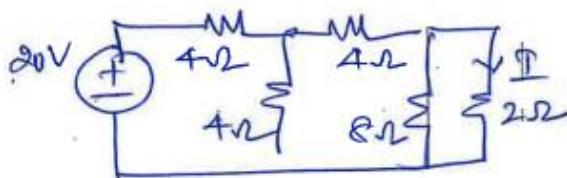
2 a)

10

Find the value of resistance between the terminals a-b of the network shown in fig(2a).


- b) Draw the network for the following nodal equations in matrix form.

10


$$\begin{bmatrix} \left(\frac{1}{-j10} + \frac{1}{10} \right) & -\frac{1}{10} \\ -\frac{1}{10} & \left(\frac{1}{5} (1-j) + \frac{1}{10} \right) \end{bmatrix} \begin{bmatrix} v_a \\ v_b \end{bmatrix} = \begin{bmatrix} 10 \angle 0^\circ \\ 0 \end{bmatrix}$$

UNIT - II

- 3 a) State Thevenin's theorem and explain the procedure for finding R_t . 6
 b) Find the Norton equivalent for the circuit of figure(3b). 8

- c) Find the current in 2Ω resistor in figure(3c) and hence prove reciprocity theorem. 6

UNIT - III

- 4 a) Two coils one of $R_1=0.51\Omega$, $L_1=32mH$ the other of $R_2=1.3\Omega$, $L_2=15mH$ and two capacitance of $25mF$ and $62mF$ are all in series with a resistance of 0.24Ω . Determine the following for the circuit. 8

- Resonant frequency
- Q of each coil
- Q of the circuit
- Cut off frequencies

- b) Prove that the resonant frequency is the geometric mean of the two half power frequencies. 6

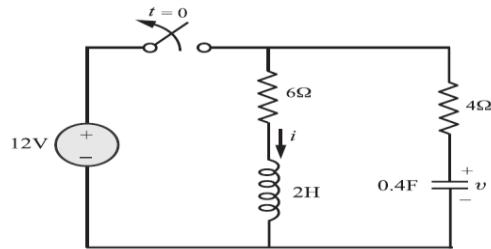
- c) In a series resonant circuit the current is maximum when $C=500\text{pf}$ and frequency is 1MHz . If C is changed to 600pf the current decreases by 50%. Find the resistance inductance and quality factor. 6

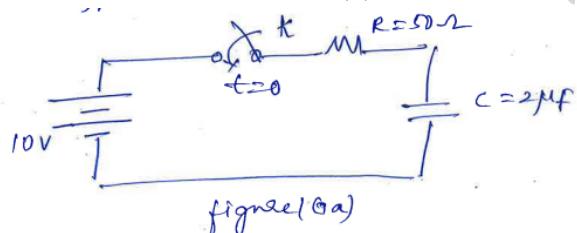
UNIT - IV

- 5 a) Find the laplace transforms of a) unit step function b) decaying exponential 6

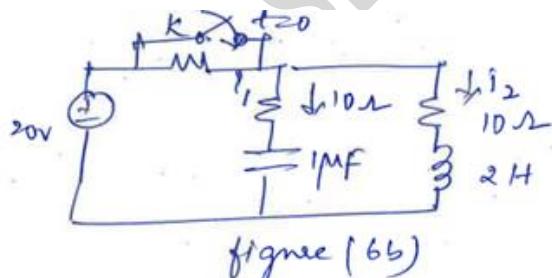
- b) Analyze the circuit shown in fig 5.1 to find 8

- $i(0+)$ and $V(0+)$
- $\frac{d(i(0+))}{dt}$ and $\frac{d(v(0+))}{dt}$




Fig 5.1

- c) With necessary proof state initial value theorem. 6


OR

- 6 a) Mention the necessary procedure to evaluate initial conditions. 6

- b) In figure 6a switch k is closed at $t=0$: find $i(0)$, di/dt , d^2i/dt^2 at $t=0^+$ 6

- c) In the circuit shown in figure (6b) steady state is reached with switch k open. The switch is closed at $t=0$. Determine i_1 , i_2 , di_1/dt and di_2/dt at $t=0^+$. 8

UNIT - V

- 7 a) Determine z parameter and use Z parameter relationship to express ABCD parameters in terms of Z parameters 10

- b) Construct a circuit that realize the following Z parameters $Z = \begin{bmatrix} 12 & 4 \\ 4 & 8 \end{bmatrix}$ 10
