

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

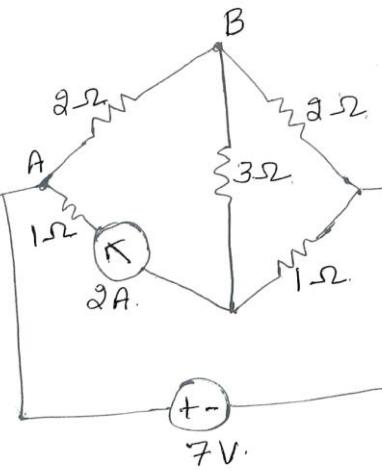
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

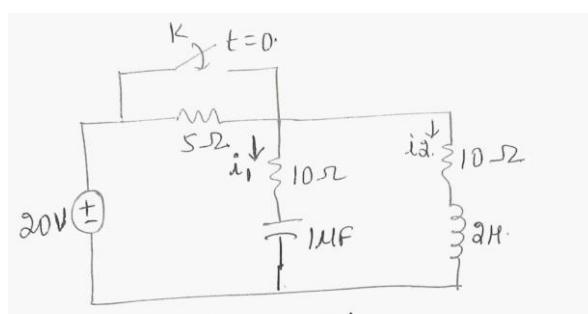
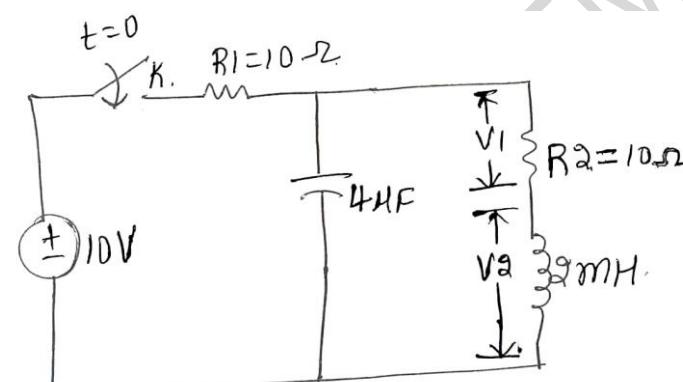
Branch: ES CLUSTER (MD & EC)

Course Code: 22ES3PCNAL


Course: Network Analysis

Semester: III

Duration: 3 hrs.



Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the following with relevant equations (i)Delta-star conversion (ii)Star-Delta conversion	-	-	10
	b)	Find the current in branch 'AB'(Ref. Fig Q1(b)).	CO 1	PO 1	6
	c)	<p>Fig Q1(b)</p>	CO 1	PO 1	4
		OR			
2	a)	Briefly explain the classification of electrical network.	-	-	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Find current i_1 using source transformation (Ref. Fig Q2(b)).	CO 1	PO 1	6
	c)	Explain super node analysis with an example.	CO 1	PO 1	4
		UNIT - II			
3	a)	State and explain Thevenin's theorem.	CO 1	PO 1	10
	b)	Find the current in the 6Ω resistor using the principle of superposition (Ref. Fig Q3(b)).	CO 1	PO 1	4
	c)	State and prove Nortons theorem.	CO 1	PO 1	6
		UNIT - III			
4	a)	Obtain an expression for resonant frequency in a series RLC circuit.	CO 1	PO 1	10
	b)	In a parallel RLC circuit, $C=50\mu F$. Determine BW, Q, R and L for the following cases (i) $W_0=100$, $W_2=120$ (ii) $W_0=100$, $W_1=80$	CO 1	PO 1	7
	c)	Explain Duality of networks.	-	-	3
		UNIT - IV			
5	a)	Find the laplace transform of each of the following functions: (i) $x(t) = \delta t u(t) - 4 \frac{d}{dt} \delta(t)$ (ii) $x(t) = 5u(t/3)$ (iii) $x(t) = 5e^{-t/2}u(t)$	CO 2	PO 2	10

	b)	In the circuit (Ref. Fig Q5(b)), steady state is reached with switch 'k' open. The switch is closed at $t=0$. Find $i_1, i_2, di_1/dt$ and di_2/dt at $t = 0^+$	CO 2	PO 2	10
		 Fig Q5(b)			
		OR			
6	a)	State and prove initial and final value theorem.	CO 2	PO 2	10
	b)	The switch 'k' is closed at $t=0$ (Ref. Fig Q6(b)). Find (i) V_1 & V_2 at $t = 0^+$ (ii) V_1 & V_2 at $t = \infty$ (iii) dV_1/dt & dV_2/dt at $t = 0^+$	CO 2	PO 2	10
		UNIT - V			
7	a)	Obtain the Z-parameters in terms of ABCD parameters.	CO 2	PO 2	10
	b)	Find Z & Y parameter for the circuit shown below (Ref. Fig Q7(b))	CO 2	PO 2	10
		 Fig Q7(b)			
