

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

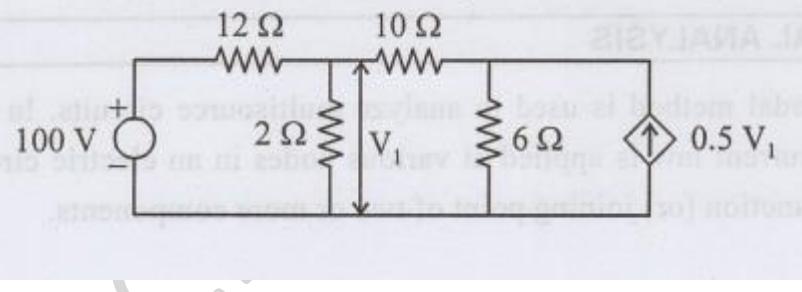
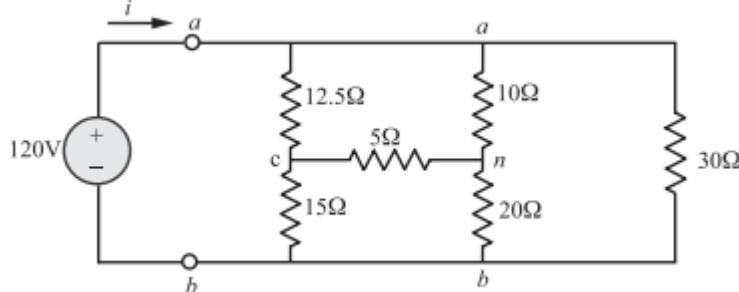
Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: ES CLUSTER(EC, EE, EI, ET &MD)

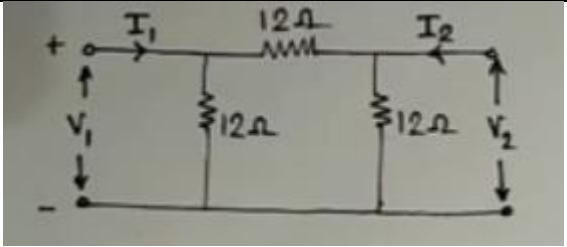
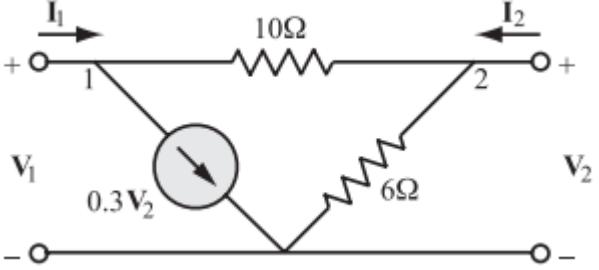
Course Code: 23ES3PCNAL



Course: Network Analysis

Semester: III

Duration: 3 hrs.

Max Marks: 100



Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With an example illustrate source shifting concept in network analysis.	CO1	PO 1	4
	b)	For the circuit shown in Fig 1.1. Find V_1 using mesh analysis technique.	CO 1	PO 1	8
		Fig 1.1			
	c)		CO 2	PO 2	8
		Fig 1.2			
		Analyze the circuit shown in Fig 1.2 using Star Delta concept and find i			
		OR			
2	a)	Discuss the concept of super node with relevant example	-	-	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Fig 2.1</p> <p>Apply nodal analysis technique for the circuit shown in Fig 2.1 and find v</p>	CO 1	PO 1	8
	c)	<p>Fig 2.2</p> <p>For the circuit shown in Fig 2.2 find i_1, i_2 and i_3</p>	CO 2	PO 2	8
UNIT - II					
3	a)	State and explain Norton's Theorem as applied to electrical network.	CO 1	PO 1	4
	b)	<p>Fig 4.1</p> <p>For the circuit shown in Fig 4.1 calculate R_L for maximum power transfer and also find maximum power</p>	CO 1	PO 1	8
	c)	<p>For the circuit shown in Fig 4.2 calculate i_x using superposition theorem</p>	CO 2	PO 2	8

UNIT - III					
4	a)	Derive an expression for resonant frequency and quality factor in parallel resonance circuit.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	A series RLC circuit consists of $R = 10 \Omega$, $L = 0.01 \text{ H}$, and $C = 0.01 \mu\text{F}$, is connected across a supply of 10 mV. Determine, i) f_0 ii) Q-factor iii) BW iv) f_1 and f_2 v) I_0	<i>CO 1</i>	<i>PO 1</i>	10
UNIT - IV					
5	a)	State and prove final value theorem	<i>CO 1</i>	<i>PO 1</i>	6
	b)	<p>Fig 5.1 Find the laplace transform of $Z(t)$ shown in Fig 5.1</p>	<i>CO 1</i>	<i>PO 1</i>	7
	c)	<p>Fig 5.2 Analyse the circuit shown in Fig 5.2 and find i, di/dt and d^2i/dt^2 at $t=0+$</p>	<i>CO 2</i>	<i>PO 2</i>	7
OR					
6	a)	Find the laplace transform of a delayed ramp waveform	<i>CO 1</i>	<i>PO 1</i>	6
	b)	<p>Fig 6.1 Find the Laplace transform of the waveform shown in Fig 6.1</p>	<i>CO 1</i>	<i>PO 1</i>	7
	c)	Obtain the expression for transient current in RC series circuit when excited by D.C input at $t=0$. Also sketch the response.	<i>CO 2</i>	<i>PO 2</i>	7

UNIT - V				
7	a)	Define T parameters of a Two port network	-	- 4
	b)	 Fig 7.1 Find h parameters for the circuit shown in Fig 7.1	<i>CO 1</i>	<i>PO 1</i> 8
	c)	 Fig 7.2 Using two port network concept Solve the circuit shown in Fig 7.2 and find Z parameters	<i>CO 2</i>	<i>PO2</i> 8
