

B.M.S. College of Engineering, Bengaluru-560019

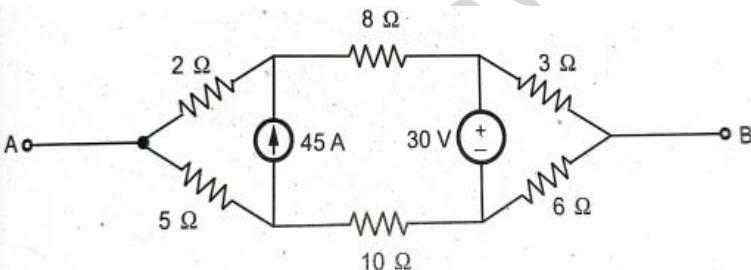
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: ES CLUSTER(EC, EE, EI, ET &MD)

Course Code: 23ES3PCNAL


Course: Network Analysis

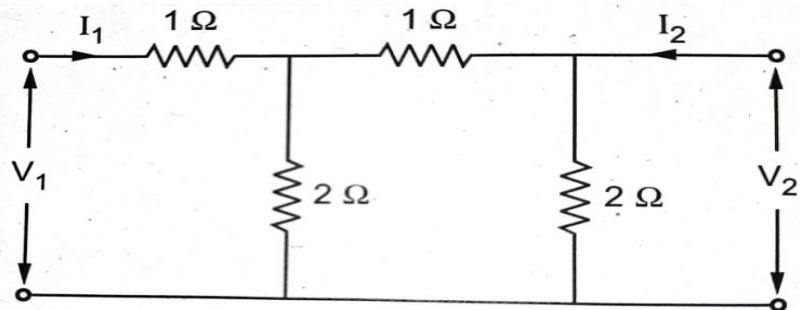
Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the concept of Supermesh analysis with an example.	<i>CO1</i>	<i>PO1</i>	05
	b)	Reduce the network shown in the Fig. to a single voltage source in series with a resistance using source shifting and source transformations.	<i>CO1</i>	<i>PO1</i>	07
	c)	<p>Use the nodal analysis to calculate the value of V_x in the circuit shown in the Fig. such that the current through $(2 + j3) \Omega$ impedance is zero.</p>	<i>CO1</i>	<i>PO1</i>	08
OR					
2	a)	Explain the concept of Supernode analysis with an example.	<i>CO1</i>	<i>PO1</i>	05


Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write the mesh equation for the circuit shown in Fig. and determine mesh currents using mesh analysis.	CO1	PO1	07
TRY EXAMS 2024					
	c)	For the network shown in the Fig. Consists of two star connected circuits in parallel. Obtain the single delta connected equivalent.	CO1	PO1	08
UNIT - II					
3	a)	State and prove Reciprocity Theorem.	CO1	PO1	10
	b)	Using Superposition Theorem, obtain the response 'I' for the network shown in Fig.	CO1	PO1	10
UNIT - III					
4	a)	Explain parallel resonance. Derive the expression for parallel resonance in resonant circuit with resistances in series with L and C.	CO2	PO2	10
	b)	A series RLC circuit consists of $R = 10 \Omega$, $L = 0.01 \text{ H}$, and $C = 0.01 \mu\text{F}$, is connected across a supply of 10 mV . Determine, i) f_0 ii) Q-factor iii) BW iv) f_1 and f_2 v) I_0	CO2	PO2	10
UNIT - IV					
5	a)	State and explain Final value theorem.	CO2	PO2	05

	b)	In the series RL circuit shown in the Fig. The source voltage $v(t) = 50 \sin 250t$ V. Determine the resulting current if the switch is closed at $t = 0$.	CO2	PO2	08
	c)	<p>Determine the Laplace transform of,</p> <p>OR</p>	CO2	PO2	07
6	a)	Define Laplace transform and explain the property Linearity.	-	-	05
	b)	Determine the Laplace transform of the periodic function shown in the Fig.	CO2	PO2	08
	c)	Obtain the expression for transient current in RC series circuit when excited by D.C input at $t=0$. Also sketch the response.	CO2	PO2	07
		UNIT - V			
7.	a)	Determine the y-parameters of the circuit shown in the Fig.	CO3	PO5	10

b)

Determine the 'Z' parameters of the circuit shown in the Fig.

CO3

PO5

10
