

B.M.S. College of Engineering, Bengaluru-560019

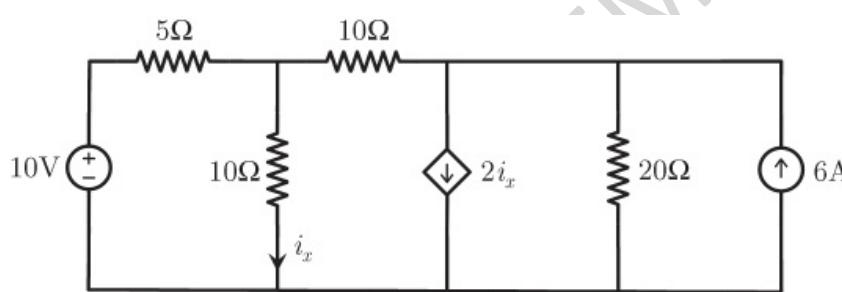
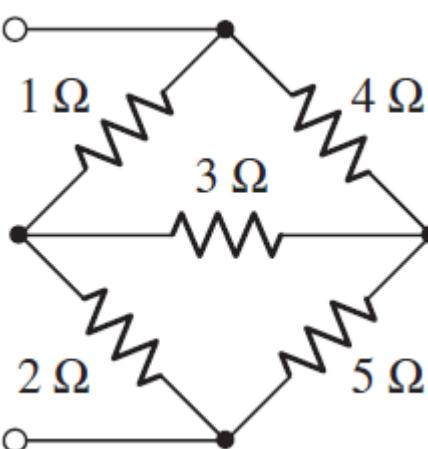
Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: EEE/ECE/MD/ETE/EIE



Duration: 3 hrs.

Course Code: 23ES3PCNAL

Max Marks: 100

Course: Network Analysis

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Using KVL technique, calculate the unknown current i_x in the circuit shown in figure 1a.	CO 1	PO1	8
			<p>Figure 1a.</p>			
		b)	Use the technique of Δ -Y conversion to find the Thevenin equivalent resistance of the circuit in figure 1b.	CO 1	PO1	7
			<p>Figure 1b.</p>			
		c)	Compute the current through the $4.7\text{ k}\Omega$ resistor in figure 1c after first transforming the 9 mA source into an equivalent voltage source.	CO 1	PO1	5

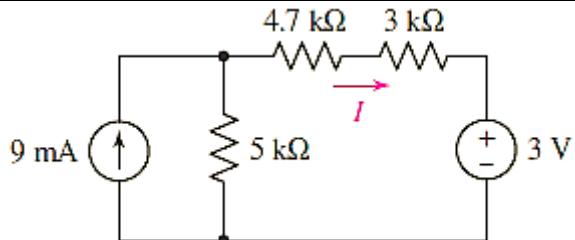


Figure 1c

OR

2 a) Consider the following circuit shown in figure 2a. involving a voltage-dependent voltage source. Find the power of the 3 ohm resistor.

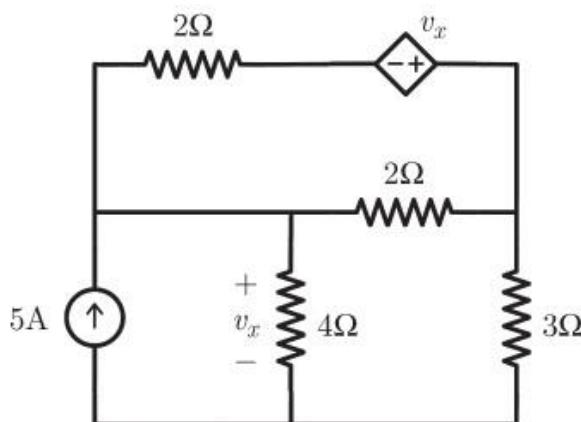


Figure 2a.

b) Derive the general equations for the conversion of star-delta circuits considering the resistive load.

c) Use source transformation to find V_o in the circuit in figure 2c.

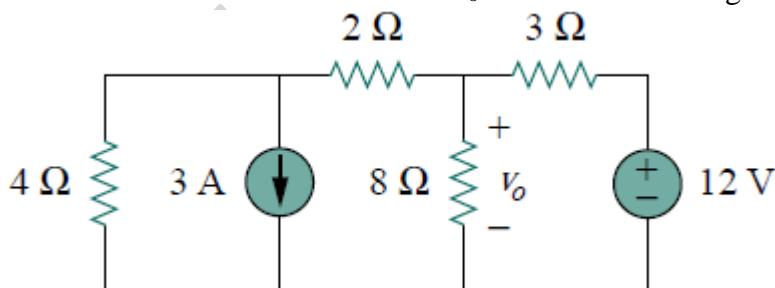


Figure 2c

UNIT - II

3 a) For the circuit of Figure 3a, use superposition to determine the unknown branch current i_x .

CO 1

PO1

7

CO 1

PO1

8

CO 1

PO1

5

CO 1

PO1

6

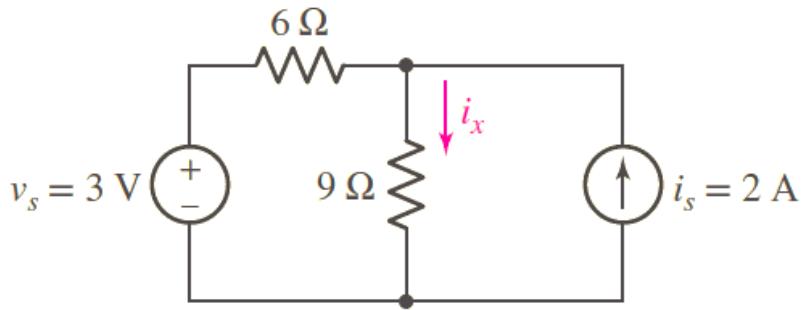


Figure 3a

b) Find the Thevenin equivalent circuit of the circuit shown in Figure 3b, to the left of the terminals a-b. Then find the current through R_L for i. $R_L = 6\text{ ohms}$ and ii. $R_L = 16 \text{ ohms}$.

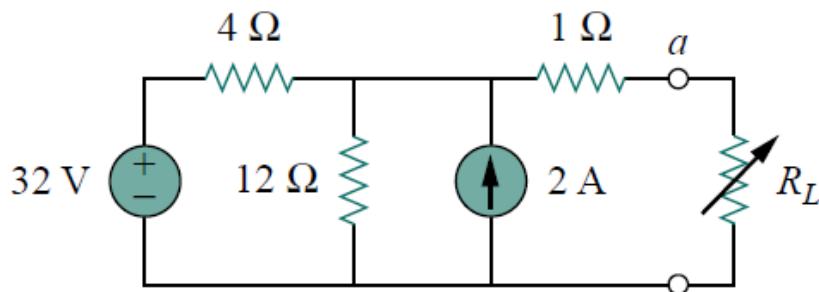


Figure 3b.

c) State and explain reciprocity theorem with the help of a circuit diagram

OR

4 a) State the Norton's theorem with an example.

b) Find the Norton equivalent circuit of the circuit in figure 4b.

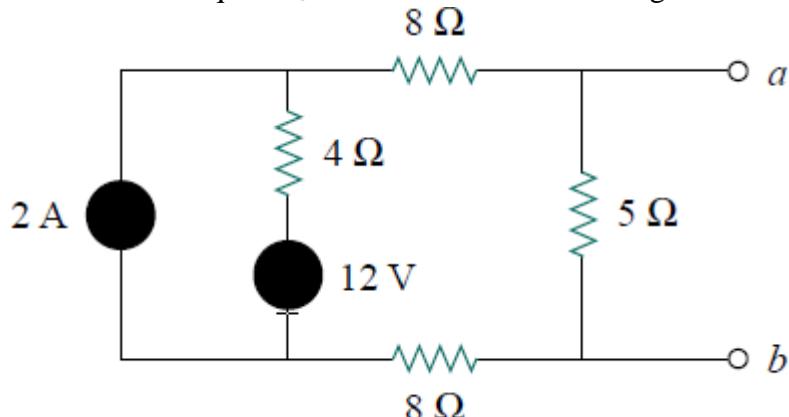


Figure 4b

c) Prove that the maximum power delivered to a resistive load is given by

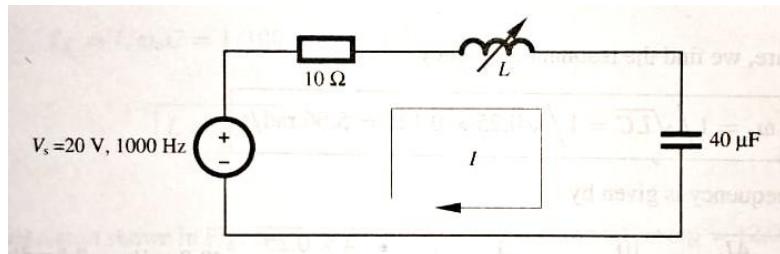
$$P_{\max} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}}$$

CO 1 PO1 8

CO 1 PO1 6

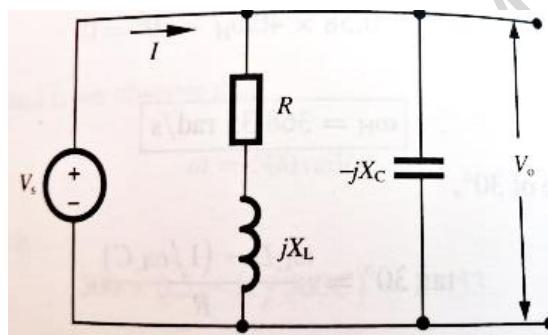
CO 1 PO1 6

CO 1 PO1 8


CO 1 PO1 6

UNIT - III

5 a) Consider a series RLC circuit energized through a DC source of voltage $-V_s$. Derive the expression for resonant frequency and maximum power delivered at resonance condition.


CO 2 **PO2** 8

b) Consider a series resonant circuit shown in figure 5b. Find the voltage drop across each element under resonance. Find the value of the inductance also, given the applied voltage is 20 V at 1 kHz.

Figure 5b.

c) Derive the expression for the resonant frequency for the circuit shown in the figure 5c.

Figure 5c.

OR

6 a) In a series RLC network, $R=50$ ohm, $C=20\mu F$ and $L=50$ mH. Find the voltage across each element when the voltage across the resistor is a maximum, given the applied voltage is 100 V with a variable frequency.

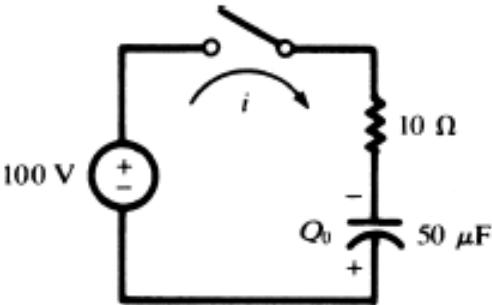
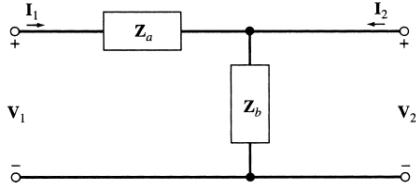
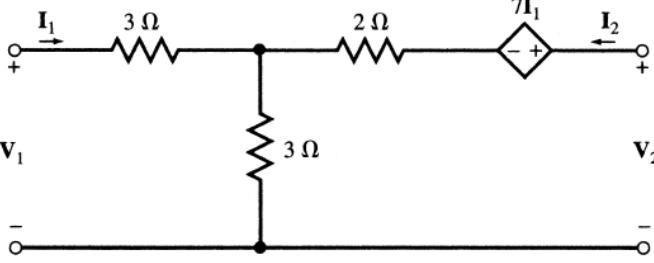
CO 2 **PO2** 7

b) Derive the relation between quality factor and resonant frequency of a parallel resonant RLC circuit.

CO 2 **PO2** 7

c) For a series resonance circuit, derive the expression for the natural frequency ω when voltage across the inductor is maximum.

CO 2 **PO2** 6




UNIT - IV

7 a) State and prove the initial value theorem applied using Laplace transform.

CO 2 **PO2** 8

b) Find the current developed in a series RLC circuit in response to the following two voltage sources applied to it at $t = 0$: (a) a unit-step, (b) a unit-impulse.

CO 2 **PO2** 8

		c)	Find the Laplace transform of $f(t) = 1 - e^{-at}$, where a is a constant.	CO 2	PO2	4
			OR			
8	a)	In the series RC circuit of Figure 8a, the capacitor has an initial charge of 2.5 mC . At $t = 0$, the switch is closed and a constant-voltage source $V = 100 \text{ V}$ is applied. Use the Laplace transform method to find the current.		CO 2	PO2	8
			Figure 8a			
	b)	State and prove the Final value theorem applied using Laplace transform.		CO 2	PO2	8
	c)	Find the Laplace transform of $e^{-at} \cos \omega t$, where a is a constant.		CO 2	PO2	4
		UNIT - V				
9	a)	The Z -parameters of a two-port network N are given by $Z_{11} = 2s + 1/s$ $Z_{12} = Z_{21} = 2s$ $Z_{22} = 2s + 4$ Find the T-equivalent for the given Z parameter data		CO3	PO5	10
	b)	Derive the Conversion expressions between Z - and Y -Parameters		CO3	PO5	10
		OR				
10	a)	Find the T-parameters as shown in Fig. 10a where Z_a and Z_b are nonzero.		CO3	PO5	10
		Figure 10a				
	b)	Find the Z - and Y -parameters of Fig 10b		CO3	PO5	10
		Figure 2				