

B.M.S. College of Engineering, Bengaluru-560019

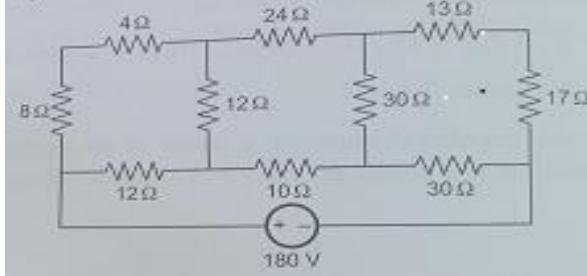
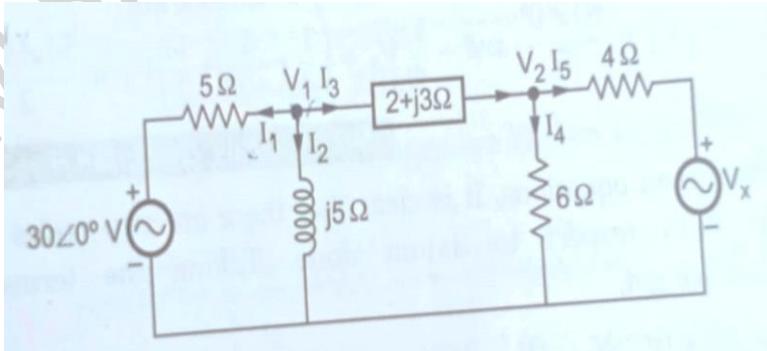
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

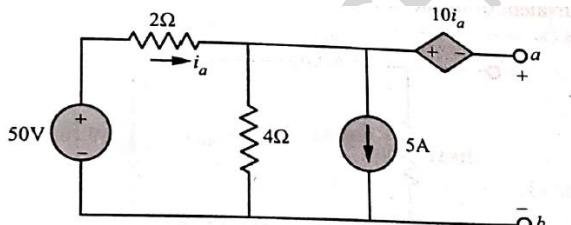
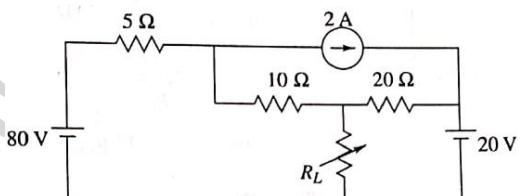
Programme: B.E.

Branch: ES CLUSTER (EC, EE, EI, ET & MD)

Course Code: 23ES3PCNAL



Course: Network Analysis

Semester: III



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine the current through $10\ \Omega$ resistance in the network shown in the Fig 1a by star-delta conversion.</p> <p>Fig 1a</p>	CO 1	PO 1	10
	b)	<p>Use the nodal analyses to find the values of V_x in the circuit shown in Fig 1b such that the current through $(2+j3)\Omega$ impedance is zero.</p> <p>Fig 1b</p>	CO 1	PO 1	10
OR					
2	a)	<p>Enumerate the following with suitable examples:</p> <ol style="list-style-type: none"> 1. Unilateral and Bilateral networks 2. Lumped and Distributed networks 	CO 1	PO 1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Draw the network for the following mesh equation: $\begin{bmatrix} 5+j5 & -j5 & 0 \\ -j5 & 8+j8 & -6 \\ 0 & -6 & 10 \end{bmatrix} \begin{bmatrix} I1 \\ I2 \\ I3 \end{bmatrix} = \begin{bmatrix} 30\angle 0^\circ \\ 0 \\ -20\angle -0^\circ \end{bmatrix}$	CO 1	PO 1	05
	c)	Find Voltages V_1 and V_2 for the circuit shown in Fig 2c.			10
UNIT - II					
3	a)	Find the Thevenin's and Norton's equivalent circuit for the network shown in Fig 3a.	CO 1	PO 1	10
	b)	For the circuit shown in Fig 3b, Find the value of Resistance R_L for maximum power and calculate the maximum power.	CO 1	PO 1	10
UNIT - III					
4	a)	Two coils, one of $R_1=0.51\Omega$, $L_1=32\text{mH}$, the other of $R_2=1.3\Omega$ and $L_2=15\text{mH}$ and two capacitors of $25\mu\text{H}$ and $62\mu\text{H}$ are all in series with a resistance of 0.24Ω . Determine the following i) Resonant frequency ii) Q of each coil iii) Q of the circuit iv) Cutoff frequencies v) Power dissipated at resonance if $E=10\text{V}$.	CO 2	PO 2	10

	b)	A parallel circuit has a fixed capacitor and variable inductor having constant quality factor of 4. Find values of inductance and capacitance for circuit impedance of 1000Ω at resonating frequency 2.4MHz. What is the bandwidth of circuit?	CO 2	PO 2	10
		UNIT - IV			
5	a)	A series R-C circuit shown in fig 5a consists $R=10 \Omega$ and $C=0.1F$ initially switch K is kept open for very long time at $t=0$ it is closed. Find expression for $V_c(t)$, $i_c(t)$ and $V_r(t)$ against time.	CO 2	PO 2	10
	b)	For the circuit shown in Fig 5b, the steady state is reached with 100V source. At $t=0$, switch k is opened. What is the current through the inductor at $t=1/2$ sec?	CO 2	PO 2	10
		OR			
6	a)	State and prove Initial and Final value theorem of Laplace transform.	CO 1	PO 1	08
	b)	In the network shown in Fig 6b, a steady state is reached with switch open. At $t=0$, switch is closed. Find the three loop currents at $t=0+$.	CO 2	PO 2	12
		UNIT - V			
7	a)	Express Hybrid parameters in terms of Y-parameters.	CO 1	PO 1	04

	b)	For the network shown in Fig 7b, find Z and Y-parameters.			08
	c)	Determine the transmission parameters for the network shown in Fig7c.	CO 1	PO1	08

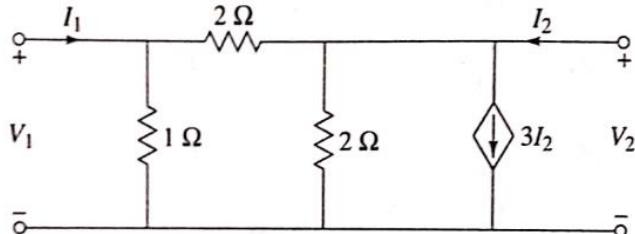


Fig 7b

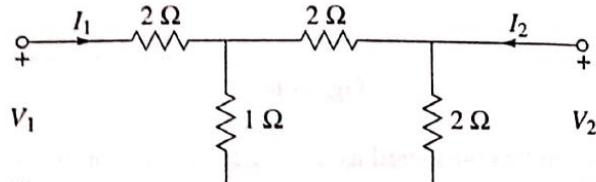


Fig 7c
