

B.M.S. College of Engineering, Bengaluru-560019

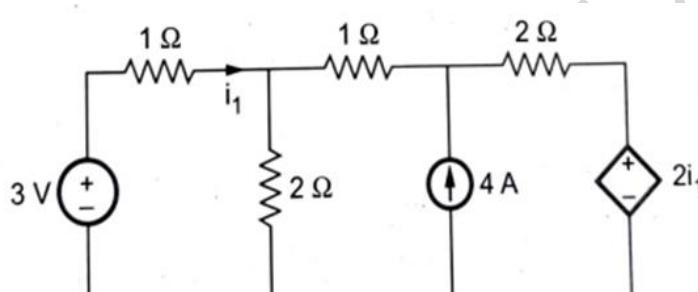
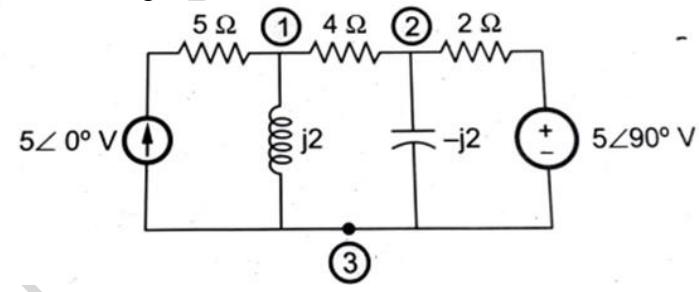
Autonomous Institute Affiliated to VTU

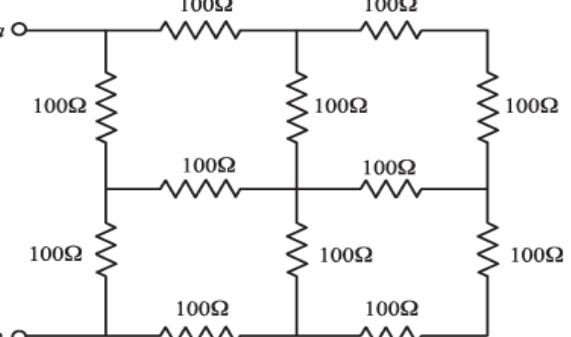
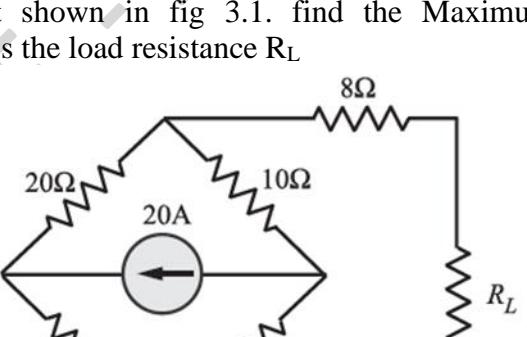
June 2025 Semester End Main Examinations

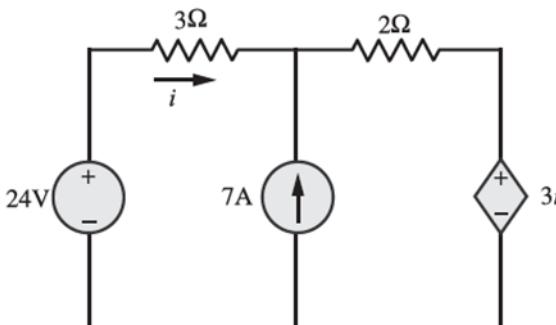
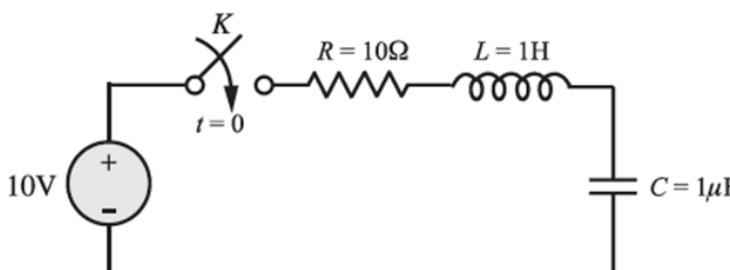
Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 22ES3PCNAL



Course: Network Analysis



Semester: III



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I	CO	PO	Marks
1	a) For the circuit shown in fig1.1 determine the current through 2Ω resistor	CO 1	PO1	10
	<p>fig1.1</p>			
	b) Determine the node voltage using node analysis for the circuit shown in fig1.2	CO1	PO1	10
	<p>fig1.2</p>			
	OR			

2	a)	Explain star delta conversion as applied to electrical network. For the network shown in fig 2.1 find the equivalent resistance between terminals a and b	CO 1	POI	10
		 fig 2.1			
	b)	For the circuit shown in fig 2.2 use mesh current method and solve for current i_a . Also find the power delivered or absorbed by the dependent and independent sources	CO 1	POI	10
UNIT - II					
3	a)	For the circuit shown in fig 3.1. find the Maximum Power dissipated across the load resistance R_L	CO 1	POI	10
		 fig 3.1			

	b)	For the circuit shown in fig 3.2. find the current i using Superposition theorem.	CO 1	POI	10
		fig 3.2			
		OR			
4	a)	State and prove Reciprocity theorem with an example.	CO 1	POI	10
	b)	For the circuit shown in fig 3.2 find the current i using norton's theorem	CO 1	POI	10
		UNIT - III			
5	a)	A series RLC circuit consists of $R=1k$ ohm, $L=100m$ H in series with a capacitor of $10pF$. If $100V$ is applied as input across the combination, find resonant frequency f_o , Q factor of the circuit, maximum current in the circuit, Half power frequencies f_1 and f_2 .	CO 2	PO2	10
	b)	Prove that Resonant frequency is the geometric mean of two half power frequencies and also derive the equation for Bandwidth for a parallel RLC circuit.	CO 1	POI	10
		OR			
6	a)	Derive an expression for resonant frequency and bandwidth for a series resonance circuit	CO 2	PO2	10
	b)	A Parallel RLC circuit consists of $R=1k$ ohm, $L=100m$ H in series with a capacitor of $10pF$. If $100V$ is applied as input across the combination, find resonant frequency f_o , Q factor of the circuit, maximum current in the circuit, Half power frequencies f_1 and f_2 .	CO 1	POI	10
		UNIT - IV			
7	a)	State and prove Initial value theorem and Final value theorem	CO 1	POI	8
	b)	For the network shown in fig 7.2 the switch is closed at $t=0$, Find Find the values of i , di/dt , d^2i/dt^2 at $t=0+$	CO 2	PO2	12
		fig 7.2			

OR

8 a) Analyze the given circuit shown in fig 8.1. The switch 'K' is moved from '1' to '2' at $t=0$. Find the values of i , di/dt , d^2i/dt^2 at $t=0+$. Assume steady state is achieved when K is at '1'

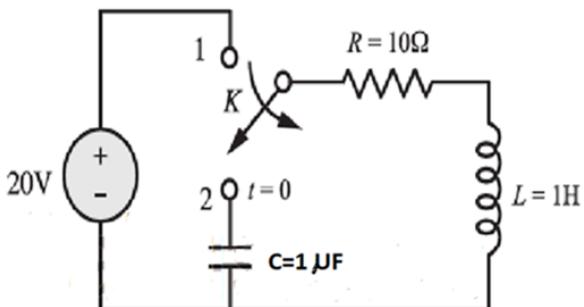


fig 8.1

b) Find the Laplace transform of the waveforms shown in Fig.8.2a & 8.2b

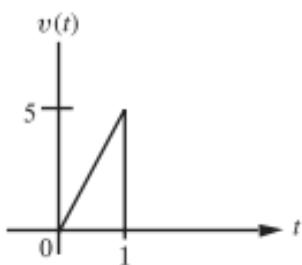


Fig.8.2a

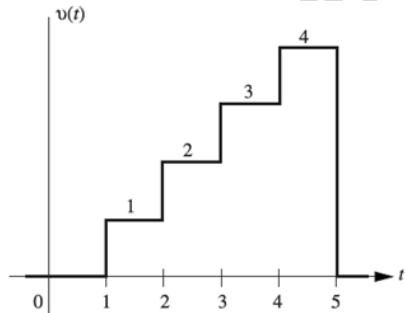


Fig.8.2b

UNIT - V

9 a) Define 'h' parameters and 'T' parameters. Obtain 'Y' parameters in-terms of 'Z' parameters and 'Z' parameters in terms of 'Y' parameters.

CO 1 POI 12

b) Find the hybrid parameters for the two port network shown in fig 9.1.

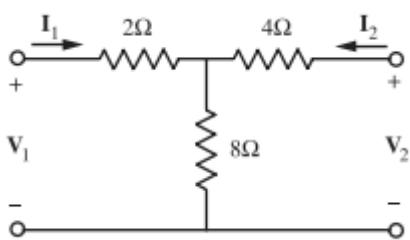


Fig 9.1

OR

10 a) Define h parameters. Obtain 'Y' parameters in-terms of 'Z' parameters and 'Z' parameters in terms of 'Y' parameters.

CO 1 POI 12

b) For the circuit shown in fig 9.1 find the T parameters

CO 1 POI 8
