

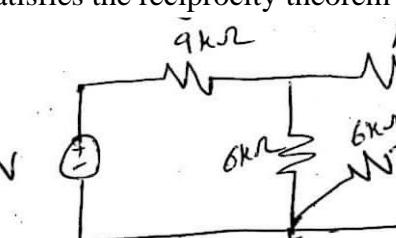
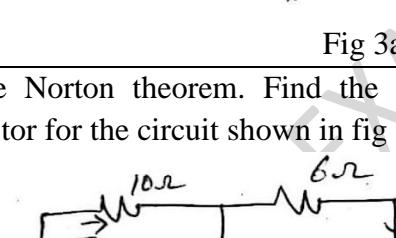
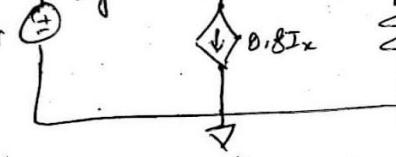
June 2025 Semester End Main Examinations

Programme: B.E.

Branch: EEE/ECE/MD/ETE/EIE

Course Code: 23ES3PCNAL

Course: Network Analysis




Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I						
			CO	PO	Marks	
1	a)	Find the power supplied by the source and power absorbed by each of the network resistors for the fig.1a	CO1	PO1	10	
		Fig 1a.				
	b)	Find V_a for the circuit shown in fig 1b using nodal analysis method.	CO1	PO1	10	
		Fig 1b.				
		OR				
2	a)	Use mesh current method to find the power delivered by the dependent voltage source for the fig 2a.	CO1	PO1	10	
		Fig 2a				

	b)	With the help of star-delta transformation find the total current in the network for the fig 2b.	CO1	PO1	10
UNIT - II					
3	a)	State the reciprocity theorem. Prove that the circuit shown in fig 3a satisfies the reciprocity theorem by calculating current I	CO1	PO1	10
		Fig 3a			
	b)	State Norton theorem. Find the current through 16ohm load resistor for the circuit shown in fig 3b.	CO1	PO1	10
		Fig 3b			
OR					
4	a)	Obtain Norton's Equivalent at terminals AB. Also find the power dissipated in 5ohm resistor connected at terminals AB for the circuit shown in fig.4a	CO1	PO1	10
		fig.4a			
	b)	Find Current in branch AB using Superposition Theorem for the circuit shown in fig.4b	CO1	PO1	10

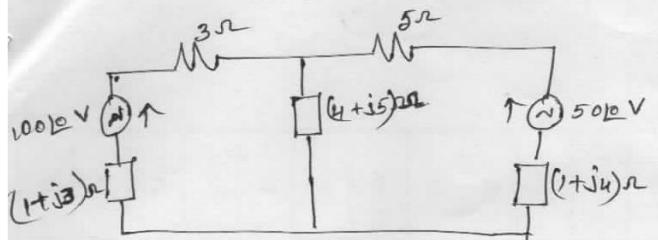


fig.4b

UNIT - III

5 a) What is the resonant frequency for the series connected RLC circuit? Derive an expression for the resonant frequency for the same.

CO1 PO1 10

b) Find the value of L for which the circuit shown is resonant at $\omega = 500$ rad/sec for fig 5b

CO1 PO1 10

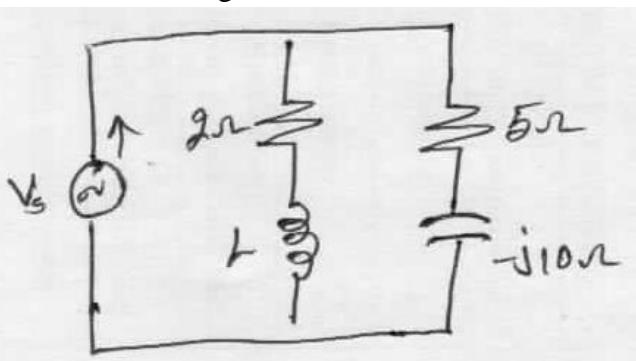


Fig 5b

OR

6 a) Explain the following with reference to the series resonance
 i. Resonant frequency
 ii. Bandwidth
 iii. Selectivity
 iv. Q-factor

CO1 PO1 10

b) Derive the expression for resonant frequency and bandwidth for a parallel resonant circuit

CO1 PO1 10

UNIT - IV

7 a) Explain the Initial and Final state of inductor.

- - 10

b) Determine the Laplace transform of the function shown in fig 7b

CO2 PO2 10

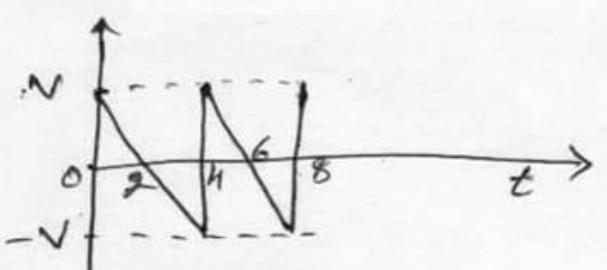
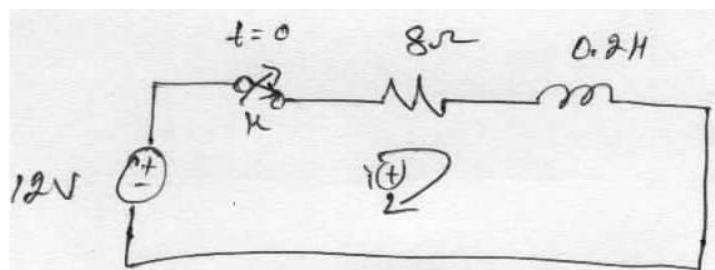
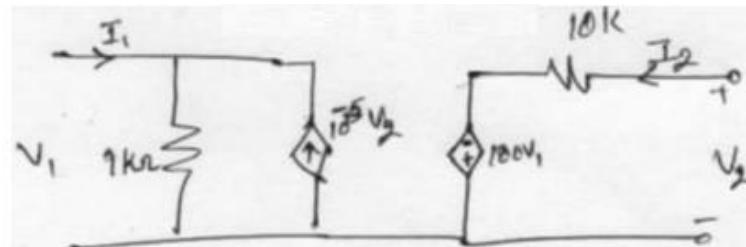




fig 7b.

OR

8 a) State and Prove Initial and Final value theorem

CO1 PO1 10

	b)	For the circuit shown in fig. 8b find $i(0+)$, $d/dt i(0+)$, $d^2/dt^2 i(0+)$	CO2	PO2	10
		Fig.8b			
		UNIT - V			
9	a)	Define Z, Y, T and H parameters. Express the relation between Z and Y parameter	CO1	PO1	12
	b)	Obtain z parameters for the circuit shown in fig 9b	CO1	PO1	8
		Fig 9b			
		OR			
10	a)	Obtain T parameters in terms of h-Parameters	CO1	PO1	10
	b)	Prove that $AD-BC=1$ in two port network	CO1	PO1	10
