

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: EIE / ETE

Duration: 3 hrs.

Course Code: 19ES3GCSAM / 22EI3PCSMT

Max Marks: 100

Course: Sensors and Measurements / Sensors and Measurements Techniques

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain the various functional elements of a measurement system	CO1	PO1	07			
	b)	Enumerate the various types of errors encountered in an measuring instrument and explain any two.	CO3	PO2	07			
	c)	Describe the critical performance characteristics you would consider when selecting the most appropriate measuring instrument	CO3	PO2	06			
			UNIT - II					
2	a)	A capacitive sensor is proposed for measuring the liquid level in a tank. Explain the working principle of this sensor using a well-labeled diagram	CO2	PO2	08			
	b)	Describe the operating principle of hygristors and illustrate their use in a specific engineering application for measuring moisture content	CO2	PO2	07			
	c)	Discuss the working principle of piezoelectric sensor.	CO2	PO2	05			
			OR					
3	a)	Explain the working of Hall effect sensor with the help of circuit diagrams.	CO2	PO2	06			
	b)	Describe the working principle of an optical liquid level detector.	CO2	PO2	06			
	c)	Explain the constructional features of LVDT and discuss any one application with suitable diagram	CO2	PO2	08			
			UNIT - III					
4	a)	It is required to perform direct acoustic measurements for a particular application. Explain the working principle with suitable diagrams.	CO4	PO4	08			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain the differences between microphones and hydrophones	CO2	PO2	06
	c)	Define i) Moisture ii) Dew-point iii) humidity ratio	CO1	PO1	06
OR					
5	a)	Describe the working principle of phototransistor and photodiode	CO2	PO2	08
	b)	Explain the operation of Scintillation detector with a photomultiplier.	CO2	PO2	07
	c)	Discuss the diverse applications of photoresistors	CO2	PO2	05
UNIT - IV					
6	a)	Explain the principle of operation involved in thin-film optical temperature measurement system.	CO2	PO2	06
	b)	Enumerate the various components of a typical contact type temperature sensor and justify its importance.	CO2	PO2	06
	c)	Explain the constructional features and working of pyroelectric sensor with suitable diagrams	CO2	PO2	08
UNIT - V					
7	a)	What do you mean by Seebeck effect in everyday circuits. Elaborate on the ways of mitigating the effect of Seebeck noise.	CO4	PO4	06
	b)	Justify how four-wire sensing improve the accuracy of remote Wheatstone bridge measurements with suitable connection diagrams?	CO3	PO2	06
	c)	Explain the role of interface circuits in facilitating communication between sensors and processing devices	CO3	PO2	08
