

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S.College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: EEE/ECE/EIE/ETE/MD

Course Code: 22ES4PCAPP

Course: ARM Processor and Programming

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	With the help of a functional block diagram, explain the essential modules of a computer	<i>CO1</i>	<i>PO1</i>	06
	b)	Analyze the working of memory cell using a neat circuit diagram.	<i>CO2</i>	<i>PO2</i>	06
	c)	For the following processor, obtain the performance. Clock rate = 800 MHz .No. of instructions executed = 1000. Average no of steps needed / machine instruction = 20. Also comment on other performance parameters of the processor in general.	<i>CO2</i>	<i>PO2</i>	08
MODULE - II					
2	a)	What is a Barrel Shifter? Elaborate the working of Barrel Shifter in ARM Data flow model,	<i>CO2</i>	<i>PO2</i>	06
	b)	Indicate the conditional flags updated by ALU operations in ARM processor. With instruction examples illustrate the operation of a Carry Flag and Zero Flag	<i>CO2</i>	<i>PO2</i>	06
	c)	Select a set of memory locations starting from location 'X' to 'X+10'. Assume that a block of data is stored in them. Write the flow chart and the program in Assembly level, to transfer this block of data to another block having the starting address as 'Y' and ending address as 'Y+10'. Justify Looping operation in this program.	<i>CO2</i>	<i>PO2</i>	08
OR					
3	a)	With example elaborate on the following Assembler Directives. (i)AREA (ii)DCB (iii)ENTRY (iv)DCW	<i>CO2</i>	<i>PO2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	With an example for each, differentiate (i)Pre and Post indexing in indirect addressing (ii)Conditional and Unconditional Branch operation (iii)Base and Offset address with Scaling in Indirect addressing	CO2	PO2	06
	c)	Analyze the following code segment and comment on branch operations used in the program. CMP r1, r2 BEQ Complete BLT Label1 SUB r1, r1, r2 B Label2 Label1 SUB r2, r2, r1 B Label2 Complete NOP END Label2 MUL r1, r1, r2 B Complete	CO2	PO3	08
		MODULE - III			
4	a)	Int checksum(int *data) { char i; int sum=0; for(i=0;i<64;i++) { sum+= data[i]; } return sum; } In the above Embedded 'C' code segment, identify the data types and the concept of looping applied	CO3	PO3	06
	b)	How do you implement function call using ARM Embedded 'C' program? Illustrate with an example	CO3	PO3	07
	c)	Convert the following code segment to its equivalent assembly level program short checksum(short *data) unsigned int i; int sum = 0; for(i=0; i<64; i++) { sum+= *(data++); } Return (short)sum; }	CO3	PO3	07

OR					
5	a)	What are 'short' and 'long' data types in ARM Embedded 'C' program? Write an Embedded 'C' program to add five, 16-bit numbers stored from memory location 'x'. Use 'C' pointer to read data from memory.	CO3	PO3	06
	b)	How does the register allocation take place in Embedded 'C' program running on ARMTDMI processor? Write a 'C' function to illustrate fixed number of iterations in 'C' looping.	CO3	PO3	08
	c)	What do you mean by instruction scheduling? How is it implemented? Explain.	CO3	PO3	06
MODULE - IV					
6	a)	What are subroutines? How do you call subroutines from the main Program? With the help of a program explain calling a subroutine and stack utilization	CO4	PO4	08
	b)	Develop the code to enable and disable IRQ interrupt with appropriate comments.	CO4	PO4	05
	c)	List any three vectored interrupts supported by ARM processor. Explain the sequence of operations to be taken place upon the occurrence of any interrupt.	CO4	PO4	07
MODULE - V					
7	a)	With the functional block diagram, elaborate on the working of LPC2148 microcontroller	CO5	PO3	07
	b)	What is a PINESELECT register? Configure the register for different peripheral operations.			06
	c)	Explain the fundamental components of an Embedded operating system.			07
