

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: EEE/ECE/ETE/EIE/MDE

Course Code: 23ES4PCAPP

Course: ARM Processor and Programming

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Identify the CISC and RISC features of ARM. Analyze the ARM design philosophy	<i>CO1</i>	<i>PO1</i>	10
	b)	List the registers of ARM processor and explain how are they referred in Load/Store architecture for loading/storing the memory location content in user mode	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	Explain the control bits of CPSR register. How ALU functioning is reflected in control flag bits? Explain the operation of Zero Flag and Carry flag	<i>CO1</i>	<i>PO1</i>	10
	b)	With an example each, give the applications of ARM processors	<i>CO1</i>	<i>PO1</i>	10
MODULE - II					
3	a)	Identify the addressing mode and differentiate operation of the following instructions. i. LDR R1, [R0, #0x4] ii. STR R1, [R0], #0x4	<i>CO2</i>	<i>PO2</i>	04
	b)	Analyze the following instructions and write appropriate addressing mode and output. Given: r0 = 0x00000000, r1 = 0x00080000, mem32[0x00008000] = 0x02020202 mem32[0x00008004] = 0x03030303 a) LDR r0, [r1, #4]! b). LDR r0, [r1, #4] c). LDR r0, [r1], #4 d) STR r0,[r1,#12] , r1=0x200, r0=0x55 e) LDMIA r0!, {r1-r3}	<i>CO2</i>	<i>PO2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Build the algorithm or flow chart to add five 16 bit numbers stored from memory location labeled 'Value1' and save the sum in location labelled 'Result'. Build the ARM assembly program to perform the task as per the flow chart/algorithm	CO2	PO2	10
		OR			
4	a)	List at least five assemble directives and show how they are used in programming	CO2	PO1	05
	b)	What do you mean by pre and post indexing? How are they incorporated in indirect register addressing with offset? Explain	CO2	PO1	07
	c)	Write an Assembly language program to simulate the following equation $y=(a*b)+c$. Where y is the output to be calculated. $a=0x0023$ and $b=0x0034$ and $c=0x0045$. Show the multiplication in hexadecimal number system	CO2	PO2	08
		MODULE - III			
5	a)	Discuss about C Data Types used in Embedded C programming	CO3	PO1	06
	b)	Explain ARM register allocation in Embedded C programming	CO3	PO1	06
	c)	Develop equivalent Embedded 'C' code for the following ARM Assembly Language code segment. Checksum MOV R2, R0; This is for loading address MOV R0, #0 ; sum =0 MOV R1, #0 ; i=0 Loop1 LDR R3, [R2, R1, LSL, #2]; to access successive memory location. ADD R1, R1, #1 AND R1, R1, #0XFF: to convert char to int CMP R1, #0X40 ADD R0, R3, R0 BCC Loop1 ; check if N=64 MOV PC, r14	CO3	PO2	08
		OR			
6	a)	Develop an Embedded C code for the calculation of checksum of a data packet containing 64 words to justify that use of "int" type local variables.	CO3	PO3	08
	b)	What do you mean by unrolling of 'C' loops? Create a 'C' function for computation of sum of 20 numbers stored using a pointer named 'data'. Use N as 5 and create four rollovers.	CO3	PO2	07
	c)	What do you mean by compiler optimization? How is it achieved in Embedded C programming?	CO3	PO1	05

MODULE - IV						
7	a)		CO4	PO2	10	
		<p style="text-align: center;">Fig.1 Subroutine</p> <p>The Fig.1 shows the stacking the link register during the subroutine execution. Elaborate on the subroutine concept with relevant instructions used and the sequence of operations performed during the execution of subroutines.</p>				
	b)	How are subroutines different from Interrupt service routines? Explain the sequence of operations whenever any of the Exceptions are activated in ARM processor	CO4	PO2	10	
OR						
8	a)	Illustrate the working of IRQ handler in ARM Processor. The illustration must include an example with main program and an IRQ handler, indicating stack utilization.	CO4	PO3	10	
	b)	What is stack? How do you access Stack using LDM and STM instructions? Explain Stack Operation in general	CO4	PO3	10	
MODULE - V						
9	a)	Develop a program to configure the DAC module of LPC 2148 for the square waveform generation	CO5	PO3	10	
	b)	With the help of register configurations build the program to transmit a string of characters serially using ARM based LPC2148 microcontroller	CO5	PO3	10	
		OR				
10	a)	Develop a program to configure the DAC module of LPC 2148 for the triangular waveform generation	CO5	PO3	10	
	b)	Write an embedded C program to blink the LEDs connected to P1.24 to P1.31 with appropriate comments	CO5	PO3	10	
