

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: EEE/ECE/ETE/EIE/MD

Duration: 3 hrs.

Course Code: 23ES4PCAPP

Max Marks: 100

Course: ARM Processor & Programming

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Identify the operating modes of ARM architecture and illustrate the banked registers used with operating mode switch.	-	-	8
		b)	Differentiate between CISC and RISC computer architectures.	2	2	6
		c)	Analyze the 3-stage pipeline with the following instructions: ADD, SUB and CMP in a sequence. How many cycles are required for the sequence to complete execution?	2	2	6
			OR			
	2	a)	Illustrate the data flow model of ARM7TDMI and briefly explain the functional blocks.	-	-	8
		b)	Explain the bit specification of Current Program Status Register.	2	2	6
		c)	Compare the features of Von-Neuman and Harvard architectures.	2	2	6
			UNIT - II			
	3	a)	Pre Conditions- r0= 0X0000000C, r1= 0X00000018, r2= 0X00000080, Show the corresponding post conditions, after executing each instruction individually i. STRB r0, [r1, - r2, LSR #4]! ii. SUBS r0, r1, r2, LSL #4	1	1	10
		b)	Write an assembly program to find the largest number in an array of 10 words defined in data memory. Use the assembler directives appropriately.	1	1	10
			OR			
	4	a)	Identify the addressing mode and differentiate operation of the following instructions. i. LDR R1, [R0, #0x4] ii. STR R1, [R0], #0x4	1	1	5
		b)	With the usage of BX and BLX, analyze how to implement ARM-Thumb interworking.	2	2	7

	c)	Write an assembly program to add five 16-bit data given in an array defined in memory and store back the result in memory.	1	1	8
		UNIT - III			
5	a)	Write the assembly code for the given 'C' function and analyze its efficiency compared to the assembly of 'for' loop usage. int checksum(int *data, unsigned int N) { int sum=0; do { sum += *(data++); } while (--N!=0); return sum; }	2	2	10
	b)	What are the different data types ARM C compiler supports? Briefly discuss on the efficient use of 'C' data types.	2	2	10
		OR			
6	a)	Given a 'C' function as below; write the compiler assembly code where both the input arguments and return values are type cast. short add_v1(short a, short b) { return a + (b>>1); }	2	2	10
	b)	Give examples of different instructions sequence and Illustrate various conditions of pipeline stall on ARM9TDMI.	2	2	10
		UNIT - IV			
7	a)	Show the stack structure and registers updated, with the execution of the following instructions. STMED sp!, {r0-r3} LDMED sp!, {r5-r8} Pre Conditions- r0= 0X0000000C, r1= 0X00000018, r2= 0X00000080, r3=0X00001122 and SP= 0X0000F008	1	1	10
	b)	Explain the steps to be followed by ARM core, while entering and exiting the exception handler.	2	2	10
		OR			
8	a)	With an example assembly code, explain how to enable and disable IRQ & FIQ exception when the ARM core is in a privileged mode.	1	1	10
	b)	Analyze and justify what address should be retrieved from 'lr' while returning from each of 7 exceptions.	2	2	10

UNIT - V					
	9	a)	With the architecture diagram of LPC2148, explain the functional blocks in brief.	2	2
		b)	Write an embedded C program to blink the LEDs connected to Port-0 pin 24 to pin 31 of LPC2148.	3	3
OR					
	10	a)	What for firmware and bootloader used in embedded system? Briefly discuss on the workflow of firmware.	2	2
		b)	Write an Embedded C program to generate a square wave using the DAC port of LPC2148 at P0.16-23 with comments.	3	3

B.M.S.C.E. - EVEN SEM 2024-25