

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

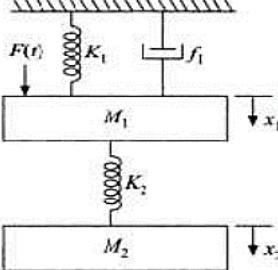
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: ES Cluster

Course Code: 19ES4ESCST


Course: Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Distinguish open loop and closed loop control system with example.	CO1	P08, 9	08
	b)	<p>a) For the mechanical system shown in below fig, determine the following</p> <p>i. Draw the mechanical network</p> <p>ii. Obtain the equations of motions for masses M_1 and M_2</p> <p>Obtain the F-V and F-I analogy</p>	CO1	P08, 9	12
		OR			
2	a)	<p>For the system represented by the following equations, find the transfer function $X(s)/U(s)$ by the signal flow graph technique.</p> $x(t) = x_1(t) + \alpha_0 u(t)$ $\frac{dx_1}{dt} = -\alpha_1 x_1(t) + x_2(t) + \alpha_2 u(t)$ $\frac{dx_2}{dt} = -\alpha_2 x_1(t) + \alpha_1 u(t)$	CO1	P08, 9	10
	b)	Describe any two block diagram reduction rules with necessary diagrams.	CO1	P08, 9	04
	c)	Apply the appropriate reduction rules and obtain the transfer function for the system shown in Fig.	CO1	P08, 9	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II				
3	a)	Define the time domain specifications of a second order system injected with a unit step input with diagram.	CO2	PO8, 9 06
	b)	A unity feedback system is characterized by an open-loop transfer function $G(s) = K / s(s+10)$. Determine the gain K so that the system will have a damping ration of 0.5.	CO2	PO8, 9 06
	c)	For a control system shown in fig 3c, find the value of K_1 and K_2 so that $M_p=25\%$ and $T_p=4$ Sec. Assume unit step input.	CO2	PO8, 9 08
UNIT - III				
4	a)	Investigate the stability of a closed loop system using RH criteria whose characteristic equation is given by $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.	CO3	PO8, 9 08
	b)	Sketch the root locus plot for a closed loop system whose loop transfer function is given by, $G(s) H(s) = K / s(s+4) (s+10)$ Comment on stability.	CO3	PO8, 9 12
UNIT - IV				
5	a)	Define the frequency response specifications.	CO4	PO8, 9 08
	b)	The open-loop transfer function of a system is given by, $G(s) H(s) = K / s(1+s) (1+0.1s)$ Using Bode plot, find the value of K. (i) $GM = 10\text{dB}$ (ii) $PM = 50^\circ$	CO4	PO8, 9 12
OR				
6	a)	A negative feedback system is characterized by an open loop transfer function is $G(s)H(s) = 1 / s(1+s) (0.5+s)$. Sketch the polar plot and hence find the following <ol style="list-style-type: none"> Gain cross over frequency Phase cross over frequency 	CO4	PO8, 9 10

		iii. Gain margin iv. Phase margin			
	b)	The open-loop transfer function of a negative feedback control system is given by $G(s) H(s) = K (s+3)/s(s^2+2s+2)$ Using Nyquist criteria, find the value of K for which the closed system is just stable.	CO4	PO8, 9	10
UNIT - V					
7	a)	Define State, state variables, and state space	CO4	PO8, 9	06
	b)	Find the state transition matrix for $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$	CO4	PO8, 9	08
	c)	Consider the system given by, $dy^3/dt^3 + 9 dy^2/dt^2 + 26 dy/dt + 24y = 6u$ obtain its state model.	CO4	PO8, 9	06
