

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July / August 2024 Semester End Main Examinations

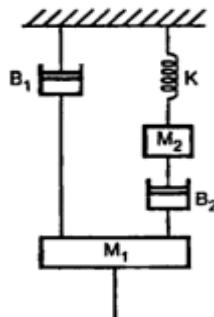
Programme: B.E.

Branch: ES Cluster

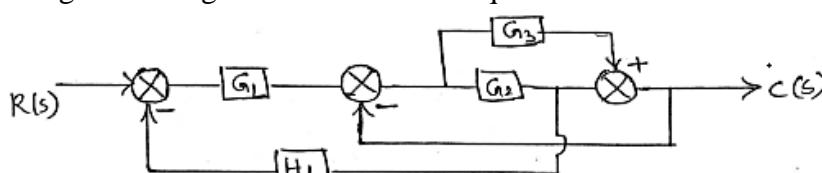
Course Code: 19ES4ESCST

Course: Control Systems

Semester: IV


Duration: 3 hrs.

Max Marks: 100


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define open loop and closed loop control system with example. What are the merits and demerits of Closed Loop control systems?	CO1	PO8, 9	10
	b)	Draw the equivalent mechanical system if the system shown in fig.1 Write the set of equilibrium equation. Obtain F-V and F-I analogous circuits.	CO1	PO8, 9	10
OR					
2	a)	For the system represented by the following equations, find the transfer function $X(s)/U(s)$ by the signal flow graph technique. $x(t) = x_1(t) + \alpha_0 u(t)$ $dx_1/dt = -\alpha_1 x_1(t) + x_2(t) + \alpha_2 u(t)$ $dx_2/dt = -\alpha_2 x_1(t) + \alpha_1 u(t)$	CO1	PO8, 9	08
	b)	Describe any two block diagram reduction rules with necessary diagrams.	CO1	PO8, 9	04
	c)	Obtain C(s)/R(s) ratio for the block diagram shown in fig.2 using block diagram reduction technique.	CO1	PO8, 9	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

Fig(1)

Fig(2)

UNIT - II					
3	a)	Define the time domain specifications of a second order system injected with a unit step input with diagram.	CO2	PO8, 9	04
	b)	A unity feedback system has $G(s) = K / (s+2)(s+4)(s^2+6s+25)$ using R-H criterion, find the range of K for stability, marginal value of K and frequency of sustained oscillations.	CO2	PO8, 9	08
	c)	For a control system shown in fig 3, find the value of K_1 and K_2 so that $M_p=25\%$ and $T_p=4$ Sec. Assume unit step input.	CO2	PO8, 9	08
Fig(3)					
UNIT - III					
4	a)	Check the stability of the given characteristic equation using Routh's method $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$.	CO3	PO8, 9	10
	b)	Sketch the root locus diagram of a control system having $G(s)H(s) = K / s(s+4)(s^2+4s+20)$ Comment on stability.	CO3	PO8, 9	10
UNIT - IV					
5	a)	Define the frequency response specifications.	CO4	PO8, 9	08
	b)	Sketch Bode plot for the transfer function $G(s) = Ks^2 / (1+0.2s)(1+0.02s)$ Determine the value of K for the gain cross-over frequency to be 5 rad/sec.	CO4	PO8, 9	12
OR					
6	a)	A negative feedback system is characterized by an open loop transfer function is $G(s)H(s) = 1/s(1+s)(0.5+s)$. Sketch the polar plot and hence find the following <ul style="list-style-type: none"> i. Gain cross over frequency ii. Phase cross over frequency iii. Gain margin iv. Phase margin 	CO4	PO8, 9	10
	b)	Use Nyquist stability analysis to determine the stability range of K if $G(s)H(s) = K / s(s+5)(s-2)$.	CO4	PO8, 9	10
UNIT - V					
7	a)	Define State, state variables, and state space.	CO4	PO8, 9	06
	b)	Find the state transition matrix for $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$	CO4	PO8, 9	08
	c)	Consider the system given by, $dy^3/dt^3 + 9 dy^2/dt^2 + 26 dy/dt + 24y = 6u$ obtain its state model.	CO4	PO8, 9	06
