

B.M.S. College of Engineering, Bengaluru-560019

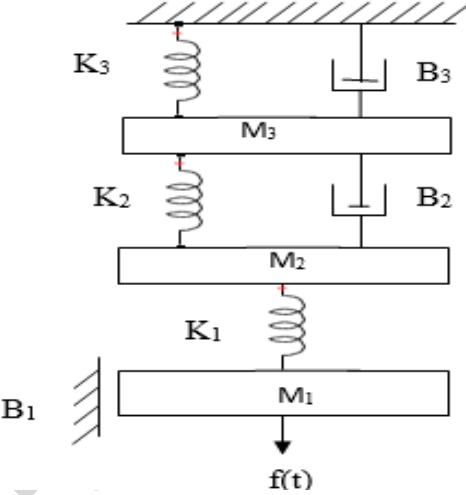
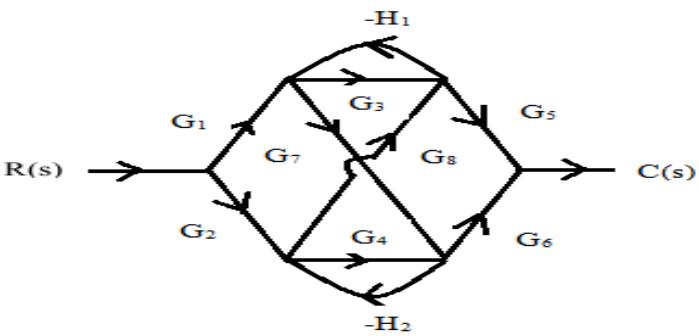
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Cluster (EEE/EIE/ECE/ETE)



Duration: 3 hrs.

Course Code: 19ES4ESCST

Max Marks: 100

Course: Control Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1 a)	<p>Draw the F-V & F-I analogous circuits for the given mechanical system shown Fig.1a and starting from the basics write the equations for both systems.</p> <p>Fig.1a</p>	CO2	PO2	12
	b)	<p>Using Mason's gain formula, obtain the transfer function for the given Fig.1b</p> <p>Fig.1b</p>	CO2	PO2	08
		OR			

2	a)	<p>Draw the Signal Flow Graph for the given block diagram in Fig.2a and hence find $\frac{C(s)}{R(s)}$</p> <p>Fig.2a</p>	CO2	PO2	10
	b)	<p>Draw the block diagram for the system described by following equations & hence find $\frac{C(s)}{R(s)}$</p> $E_1 = R(s) - C(s).H_3; E_2 = E_1 - E_4.H_1; E_3 = E_2.G_1 - C(s).H_2; E_4 = E_3.G_2; C(s) = E_4.G_3.$	CO2	PO2	10
UNIT-II					
3	a)	<p>Starting from the fundamentals, derive an expression for the step response of a typical underdamped second order closed loop control system. Show the typical variation of the response and mark the settling time on a 2% tolerance basis.</p>	CO2	PO2	10
	b)	<p>For the system shown in fig 3b, find (i) $\frac{C(s)}{R(s)}$ & type represented by $\frac{C(s)}{E(s)}$</p> <p>(ii) $\frac{C(s)}{R(s)}$ (iii) K_p, K_v, K_a (iv) Steady State Values if $r(t)=10 u(t)$</p> <p>fig 3b</p>	CO2	PO2	10
4	a)	<p>A second order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}$</p> <p>Find its rise time, peak time, peak overshoot and settling time if subjected to unit step input. Also find expression for its output response.</p>	CO2	PO2	10

	b)	Determine the time response of First order system with ramp input. Draw its response curve. Determine the step, ramp and parabolic error constants of the following unity feedback control system. $G(s) = \frac{100}{(1+0.4s)(1+5s)}$	CO2	PO2	10
		UNIT - III			
5	a)	Determine the stability of a system with the characteristic equation, (i) $S^4 + S^3 + 6S^2 + 10S + 15 = 0$. (ii) $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$	CO3	PO2	08
	b)	Sketch the complete Root locus diagram for the given transfer function, $G(S)H(S) = \frac{K}{S(S+2)(S+4)}$ from root locus diagram, find the following: (i) Calculate the maximum value of 'K' (ii) when the system is critically damped find 'K'. OR	CO3	PO4	12
6	a)	Sketch the complete root locus for the following system, comment on stability. $G(s)H(s) = \frac{K(s+5)}{(S^2 + 4S + 20)}$	CO3	PO2	08
	b)	Determine the stability of the characteristic equation $3S^4 + 10S^3 + 5S^2 + 5S + 3 = 0$ Using Routh stability criterion. A unity feedback control system is characterized by open loop transfer function. $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$ Using Routh criterion, calculate the range of values of K for the system to be stable.	CO3	PO4	12
		UNIT - IV			
7	a)	Sketch the Bode plots and Investigate the stability of a negative feedback control system whose open loop transfer function is given by $GH(S) = \frac{50}{(1+0.5s)(1+0.05s)}$	CO3	PO4	12
	b)	Explain the procedure to plot Nyquist Plot.	CO3	PO4	08
		OR			
8	a)	Sketch the Bode plot for the transfer function $G(S) = \frac{10k}{s(1+0.05s)(1+0.1s)}$. Determine the values of K such that (i) $GM = 20\text{dB}$ (ii) $PM = 10^\circ$	CO3	PO4	12
	b)	Explain the frequency domain specifications.	CO3	PO2	08

UNIT – V					
9	a)	<p>A linear time invariant system is characterized by the homogeneous state equation:</p> $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ <p>Compute the solution of homogeneous equation, assume the initial state vector</p> $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$	CO3	PO2	10
	b)	<p>Obtain the state equation and output equation of the electric circuit as show in Fig.9b</p>	CO3	PO2	10
OR					
10	a)	<p>Obtain the state model for a system represented by an electrical system as shown in fig 10a.</p>	CO3	PO2	10
	b)	<p>Represent the differential equation given below in a state model.</p> $\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + 6 \frac{dy}{dt} + 7y = 2u(t)$	CO3	PO2	10
