

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: ECE,EEE,ETE,EIE,MD

Duration: 3 hrs.

Course Code: 19ES4ESCST

Max Marks: 100

Course: Control Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

- 1 a) Enumerate and explain different types of control systems with examples **06**
b) Refer the block diagram shown in figure 1b, using block diagram reduction techniques find the overall transfer function **07**

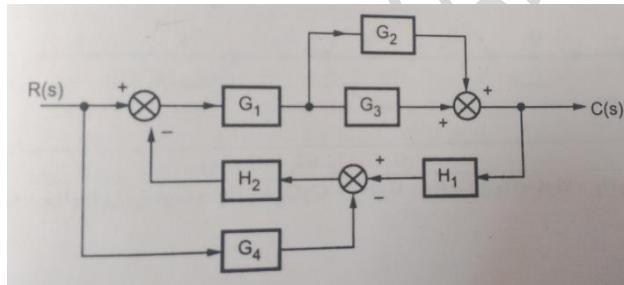


Figure 1b

- c) For the mechanical system shown in figure 1c, draw the mechanical network, Write **07** differential equations and force-voltage electrical network

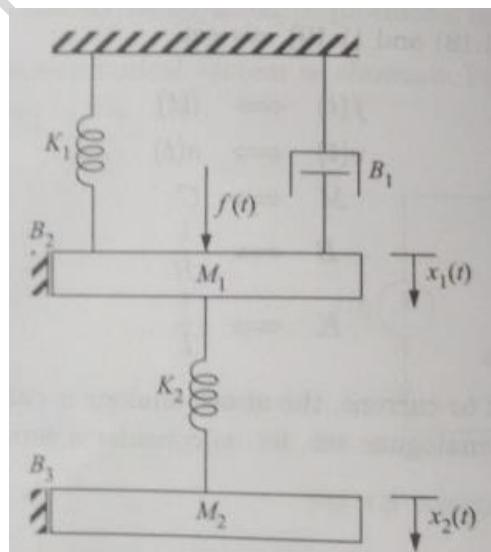


Figure 1c

OR

- 2 a) For the signal flow graph shown in figure 2a, find the transfer function using **07** mason's gain formula.

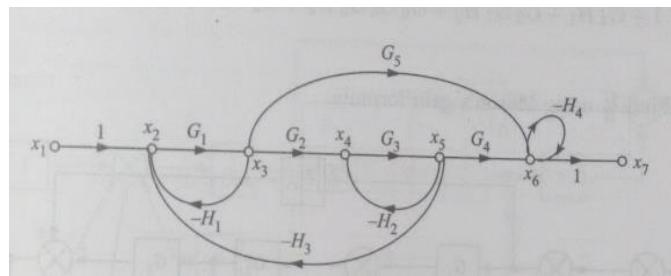


Figure 2a

- b) For the rotational mechanical system shown in figure 2b, draw an electrical network based on torque –voltage analogy **07**

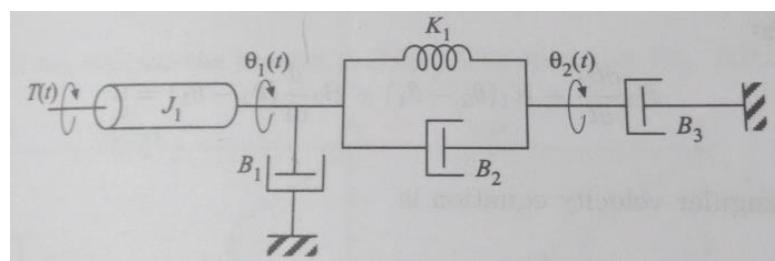


Figure 2b

- c) Draw the lead compensator electrical network and obtain its transfer function **06**

UNIT - II

- 3 a) A system is given by differential equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 8x$ **06**
 where y is output and x is input. Determine all time domain specifications for unit step input.
- b) Obtain response of a second order system for a unit step input for an under damped system **08**
- c) Find error constants K_p , K_v , K_a for a unity feedback system represented by open loop transfer function $G(s) = \frac{100}{s^2(s+2)(s+5)}$. **06**

UNIT - III

- 4 a) Examine stability of a system with characteristics equation $F(s) = s^6 + 3s^5 + 4s^4 + 6s^3 + 5s^2 + 3s + 2 = 0$, examine stability. **06**
- b) Sketch the root locus for a negative feedback control system having an open loop transfer function $G(s)H(s) = \frac{k}{s(s^2 + 6s + 10)}$ for all values of k ranging from 0 to ∞ . **10**
- c) Explain the significance of an auxiliary equation **04**

UNIT - IV

- 5 a) Using Nyquist stability criterion, investigate the stability of a closed loop System whose open loop transfer function is given by, **10**
- $$G(s)H(s) = \frac{100}{(s+1)(s+2)(s+3)}$$

- b) Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies. **10**

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$

OR

- 6 a) The open loop transfer function of a unity feedback system is given by **12**

$$G(s) = \frac{1}{s(1+s)(1+2s)}. \text{ Sketch the polar plot and determine the gain margin and phase margin.}$$

- b) The asymptotic approximation of the log-magnitude versus frequency plot of a certain system is shown in figure 6b, compute its transfer function **08**

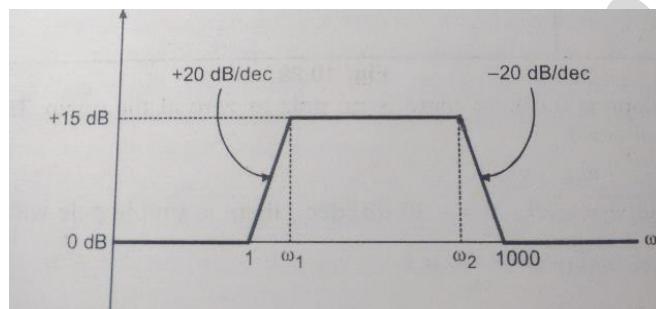


Figure 6b

UNIT - V

- 7 a) Enlist the advantages of state space analysis over the conventional control system **04**
 b) Obtain the state model of the network shown in fig.7b **08**

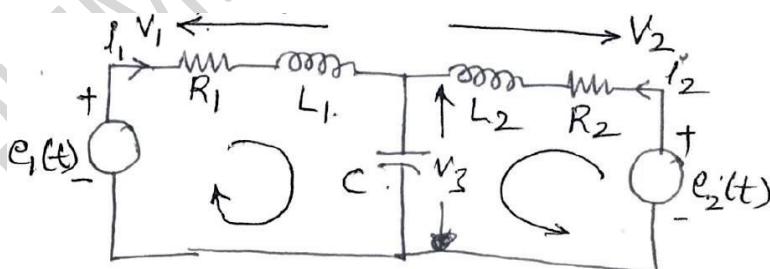


Figure 7b

- c) Consider a system having state model **08**

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u, \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
 Find the transfer function.
