

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## February 2025 Semester End Main Examinations

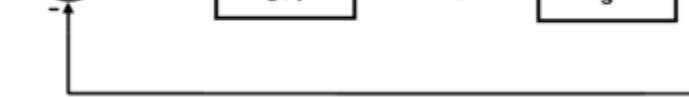
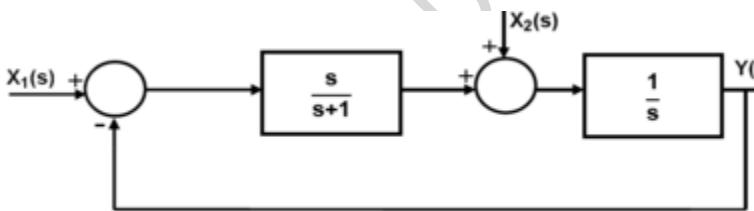
**Programme: B.E.**

**Semester: IV**

**Branch: ES Cluster(EC,EE,EI & ET)**

**Duration: 3 hrs.**

**Course Code: 22ES4ESCST**



**Max Marks: 100**

**Course: Control Systems**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I  |    |                                                                                                                                   | CO | PO | Marks     |
|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|
| 1         | a) | Explain the following types of Control Systems with examples<br>(i) Open loop Control Systems<br>(ii) Closed loop Control Systems | -  | -  | <b>5</b>  |
|           | b) | Reduce the block diagram shown in figure below using reduction rules and obtain $Y(S)/X_1(S)$ and $Y(S)/X_2(S)$                   | 1  | 1  | <b>5</b>  |
|           | c) | Determine the transfer function $\frac{V_2(s)}{V_1(s)}$ of the electrical system shown in figure                                  | 1  | 1  | <b>10</b> |
| <b>OR</b> |    |                                                                                                                                   |    |    |           |
| 2         | a) | Derive the transfer function of the negative feedback system with relevant diagrams                                               | 1  | 1  | <b>5</b>  |
|           | b) | Reduce the block diagram shown in figure below using reduction rules and obtain $C(s)/R(s)$ .                                     | 1  | 1  | <b>5</b>  |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.



|                  |    |                                                                                                                                                                                                                                                                                                                                                                                            |   |             |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|
|                  |    |                                                                                                                                                                                                                                                                                                                                                                                            |   |             |
|                  | c) | <p>Determine the transfer function <math>\frac{E_o(s)}{E_i(s)}</math> of the electrical system shown in figure</p>                                                                                                                                                                                                                                                                         | 1 | 1 <b>10</b> |
| <b>UNIT - II</b> |    |                                                                                                                                                                                                                                                                                                                                                                                            |   |             |
| 3                | a) | <p>A 2nd order control system is governed by the following differential equation</p> $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 16y = 16x$ <p>where y is output and x is input. If x is unit step function, evaluate the rise time, settling time and peak overshoot</p>                                                                                                                        | 1 | 1 <b>10</b> |
|                  | b) | <p>Evaluate <math>k_p</math>, <math>k_v</math>, <math>k_a</math> and steady state error for a system whose open loop transfer function is given below</p> $G(s)H(s) = \frac{15(s+4)(s+7)}{s(s+3)(s+6)(s+8)}$ <p>Where the input is <math>r(t) = 4+t+t^2</math></p>                                                                                                                         | 1 | 1 <b>10</b> |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                                                                                                            |   |             |
| 4                | a) | <p>For the unity negative feedback system with forward path gain</p> $G(S) = \frac{50}{S(S+5)}, \text{ find}$ <ul style="list-style-type: none"> <li>i) Percentage overshoot for a unit – step input</li> <li>ii) Setting time for a unit step input and</li> <li>iii) Steady state error for an input defined by the polynomial</li> </ul> <p><math>r(t) = 2+4t+6t^2, t \geq 0</math></p> | 1 | 1 <b>10</b> |
|                  | b) | <p>Analyze the given transfer function to determine <math>K</math>, <math>\alpha</math>, <math>\beta</math> such that steady-state position error for ramp input equals to <math>1/10</math> and the closed loop poles are located at <math>-1 \pm j1</math></p>                                                                                                                           | 2 | 2 <b>10</b> |

|   |    |                                                                                                                                                                                                                                                                          |   |   |           |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------|
|   |    | $G(S)H(S) = \frac{K(s + \alpha)}{s(s + \beta)}$ <p style="text-align: center;"><b>UNIT - III</b></p>                                                                                                                                                                     |   |   |           |
| 5 | a) | <p>Assess the critical value of the K to maintain the system stability for the given unity feedback system having an open loop transfer function</p> $G(s) = \frac{K}{s(4s+13+s^2)}$                                                                                     | 1 | 1 | <b>10</b> |
|   | b) | <p>Construct the root locus for a feedback control system with open loop TF</p> $G(s) = \frac{K}{s(s^2 + 6s + 10)}$ <p>Show all the salient points on the sketch. Determine the value of K for which the closed loop poles are all real.</p>                             | 2 | 2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                |   |   |           |
| 6 | a) | <p>Assess the stability of the system whose The characteristic equation is</p> $Q(s)=s^3+2s^2+4s+K$ <p>Where K is loop gain. Find the range of K for the system to be stable. Determine the roots of characteristic equation which make the system marginally stable</p> | 1 | 1 | <b>10</b> |
|   | b) | <p>Sketch the closed loop poles of the feedback control system with open loop transfer function</p> $G(S)H(S) = \frac{K(s + 5)}{S(S^2 + 4S + 5)}$ <p>Determine the value of K for which the closed loop poles are all real.</p>                                          | 2 | 2 | <b>10</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                         |   |   |           |
| 7 | a) | <p>Sketch the polar plot for the following transfer function. Identify the frequency at which polar plot intersects real and imaginary axis</p> $G(s) = \frac{1}{(1+3s)(1+4s)(1+5s)}$                                                                                    | 2 | 2 | <b>10</b> |
|   | b) | <p>Consider a feedback system with the following open loop transfer function</p> $G(s)H(s) = \frac{K}{s(s + 3)(s + 5)}$ <p>Investigate the stability of this system for various values of K. Draw Nyquist Plot and use Nyquist criterion for stability analysis.</p>     | 2 | 2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                |   |   |           |

|                 |    |    |                                                                                                                                                                                                                                                                                                                                |   |   |    |
|-----------------|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|                 | 8  | a) | <p>Construct the Bode Plot for a unity feedback system showing each step in detail, whose Open Loop TF is given by</p> $G(s)H(s) = \frac{10}{s(1+s)(1+0.02s)}$ <p>From the Bode plot determine (i) Gain &amp; Phase Crossover frequencies<br/> (ii) Gain &amp; Phase Margin<br/> (iii) Stability of the closed loop system</p> | 2 | 2 | 10 |
|                 |    | b) | <p>For Unity feedback system with OLTF</p> $G(s) = \frac{40}{(s+4)(s^2 + 4s + 8)}$ <p>Sketch Polar plot. Determine the points of intersection with Re and Im axes. Find Gain Margin and Phase margin.</p>                                                                                                                      | 2 | 2 | 10 |
| <b>UNIT - V</b> |    |    |                                                                                                                                                                                                                                                                                                                                |   |   |    |
|                 | 9  | a) | <p>Explain the following with suitable example</p> <ul style="list-style-type: none"> <li>(i) State and state variable</li> <li>(ii) State vector</li> <li>(iii) State space</li> <li>(iv) State matrix</li> </ul>                                                                                                             | - | - | 10 |
|                 |    | b) | <p>For the n/w shown, with initial conditions <math>i_L(0)=1</math> and <math>v_C(0)=0</math>, Determine</p> <ul style="list-style-type: none"> <li>(i) A state space description</li> <li>(ii) The state transition matrix</li> </ul>                                                                                         | I | I | 10 |
| <b>OR</b>       |    |    |                                                                                                                                                                                                                                                                                                                                |   |   |    |
|                 | 10 | a) | <p>List the drawbacks of Transfer function method compared to state space representation of a control system. Write the state model of a MIMO system with 'm' inputs, 'p' outputs and 'n' state variables</p>                                                                                                                  | - | - | 10 |
|                 |    | b) | <p>Obtain the state model for a system represented by an electrical system as shown in figure</p>                                                                                                                                                                                                                              | I | I | 10 |