

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES CLUSTER (EEE/ECE/EIE/ETE)

Course Code: 22ES4ESCST

Course: Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define control system. Distinguish between open loop and closed loop control system.	CO1	-	05
	b)	Find the transfer function $\frac{V_2(S)}{V_1(S)}$ for the electrical system shown in Fig.Q1 (b).	CO3	PO2	07
	c)	Construct mathematical model for the mechanical system shown in Fig.Q1(c). Also draw the equivalent electrical circuit based on F-V analogy.	CO3	PO2	08
OR					
2	a)	Describe closed loop control system. Mention its advantages and disadvantages.	CO1	-	08
	b)	For the system shown in Fig.Q2(b), write its mechanical network and obtain mathematical model and electrical analogous based on Force – Current analogy.	CO3	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

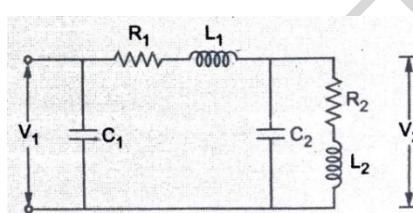


Fig. Q1(b)

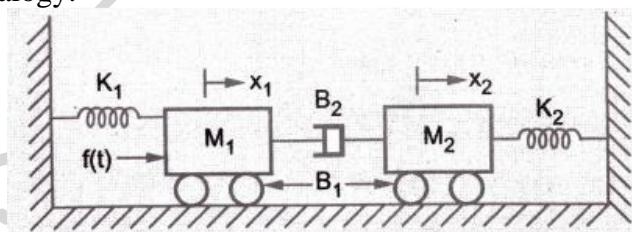


Fig. Q1(c)

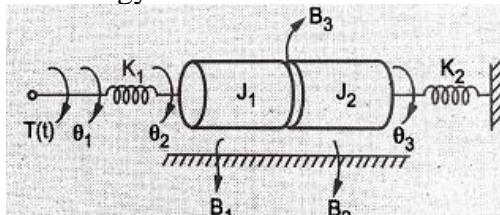


Fig. Q2(b)

	c)	Explain with relevant equations of Mass and Spring of Translational mechanical system.	CO1	-	04
		UNIT - II			
3	a)	For the given type-0 system, find the following i) All state error constants [K _p , K _v , K _a] ii) Steady state error for the input r(t)=5u(t).	CO2	PO1	08
	b)	For the unity feedback system, $G(S) = \frac{20}{(S+1)(S+4)}$, obtain the closed loop transfer function, damping ratio, natural frequency and expression for the output response if the system is subjected to unit step input.	CO3	PO2	08
	c)	Explain any two standard test inputs used in time domain analysis.	CO1	-	04
		UNIT - III			
4	a)	Check the stability of the given polynomial using Routh-Hurwitz's method. $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$	CO2	PO1	08
	b)	Sketch the complete root locus for $G(s)H(S) = \frac{K}{S(S+3)(S+5)}$ and comment on stability.	CO3	PO2	12
		UNIT - IV			
5	a)	Draw the polar plot of $G(s)H(S) = \frac{100}{(S+2)(S+4)(S+8)}$.	CO2	PO1	10
	b)	Explain the following with respect to the frequency response specifications of a system. i) Gain Crossover frequency ii) Phase Crossover frequency iii) Gain Margin iv) Phase Margin	CO1	-	10
		OR			
6	a)	A unity feedback control system has $G(s) = \frac{80}{S(S+2)(S+20)}$. Draw the Bode plot. Determine Gain Margin, Phase Margin. Comment on stability.	CO3	PO2	14
	b)	Clearly explain the steps to solve problems by Nyquist criterion.	CO1	-	06
		UNIT - V			
7	a)	Define the following terms with respect to state space analysis: i) State ii) State variables iv) State space	CO1	-	06
	b)	List the advantages of state variable analysis.	CO1	-	04
	c)	Obtain the state transition matrix and inverse transition matrix for $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$	CO2	PO1	10