

B.M.S. College of Engineering, Bengaluru-560019

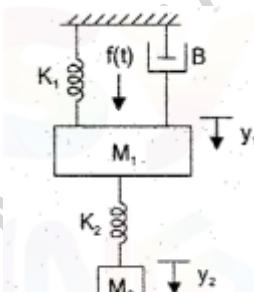
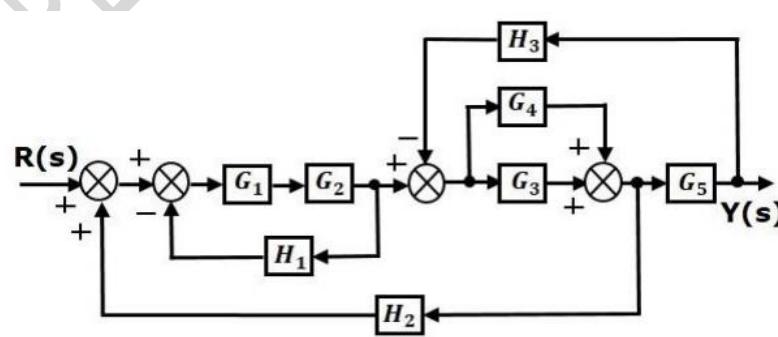
Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

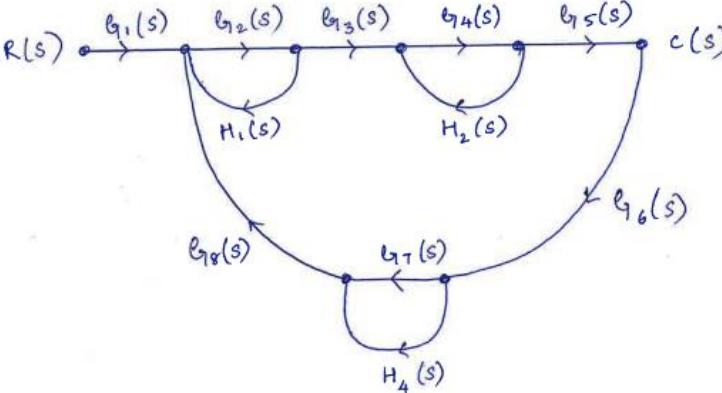
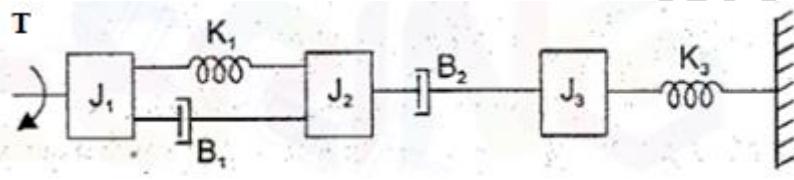
Programme: B.E.

Semester: IV

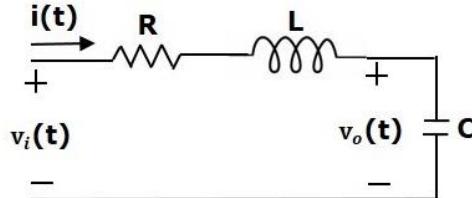
Branch: ES CLUSTER (EEE/ECE/EIE/ETE)



Duration: 3 hrs.

Course Code: 22ES4ESCST



Max Marks: 100

Course: Control Systems


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Compare open loop and closed loop control systems based on different aspects.	CO1	-	04
	b)	Analyze the mechanical system given below and determine the transfer function $\frac{Y_2(S)}{F(S)}$	CO3	PO2	08
	c)	Consider the block diagram shown in the following figure. Simplify this block diagram using the block diagram reduction rules.	CO2	PO1	08
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

2	a)	Analyze the signal flow graph shown in fig. 2.a. and obtain the closed loop transfer function of the system by using Mason's gain formula.	CO3	PO2	10
		<p>fig. 2.a.</p>			
	b)	Write the differential equations governing the mechanical system shown in fig 2.b. and obtain the torque-voltage analogous and torque-current analogous systems.	CO3	PO2	10
		<p>fig 2.b.</p>			
UNIT - II					
3	a)	Obtain an expression for response of a under damped second order system for unit step input and sketch the response.	CO2	PO1	06
	b)	State and explain the effects of PD and PI controller on the system dynamics with neat diagrams.	CO1	-	06
	c)	The open loop transfer function of a unity feedback system is $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Evaluate the static error coefficients of the system. Obtain the steady state error of the system when subjected to an input given by $R(s) = \frac{3}{s} + \frac{2}{s^2} + \frac{1}{3s^3}$	CO3	PO2	08
UNIT - III					
4	a)	Examine the stability of the following system whose characteristic equation is given below by using Routh-Hurwitz stability criterion $s^5 + 2s^4 + 2s^3 + 4s^2 + 4s + 8 = 0$.	CO3	PO2	08
	b)	Draw the root-locus of the feedback system whose open-loop transfer function is given by $G(s)H(s) = \frac{K}{s^2(s+1)}$,	CO3	PO2	12
UNIT - IV					
5	a)	Define the following frequency domain specifications with a diagram	CO1	-	06

		(i) Resonant peak (ii) Resonant frequency (iii) Cut-off frequency (iv) Phase cross-over frequency (v) Gain cross-over frequency			
	b)	For the open loop transfer function given below: $G(s)H(s) = \frac{500K(s+2)}{s(s+1)(s^2+5s+100)}$ i) Construct the Bode plots, ii) Find the Gain crossover frequency and the Gain Margin, iii) The phase crossover frequency and the Phase Margin, iv) Determine the value of K to change the gain crossover frequency to 1 rad/s, then find the corresponding Gain and Phase Margins,	CO3	PO2	14
		OR			
6	a)	For the unity-feedback system of where $G(s) = \frac{K}{s(s+3)(s+5)}$, find the range of gain, K, for stability, instability, and the value of gain for marginal stability. Use the Nyquist criterion.	CO3	PO2	10
	b)	For the following T.F draw the Bode plot and obtain Gain cross over frequency, Phase cross over frequency , Gain Margin and Phase Margin. $G(s) = \frac{20}{s(1+3s)(1+4s)}$	CO3	PO2	10
		UNIT - V			
7	a)	Derive an expression for the transfer function of the system from the state model $\dot{X} = Ax + Bu$ and $y = Cx + Du$	CO2	PO1	06
	b)	Obtain the state equation in phase variable form for the following differential equation: $2d^3y/dt^3 + 4d^2y/dt^2 + 6 dy/dt + 8y = 10u(t)$	CO2	PO1	06
	c)	Derive a state space model for the system shown. The input is $v_i(t)$ and the output is $v_o(t)$	CO3	PO2	08
