

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

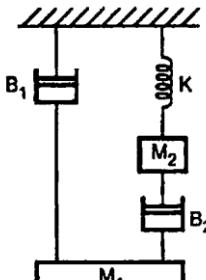
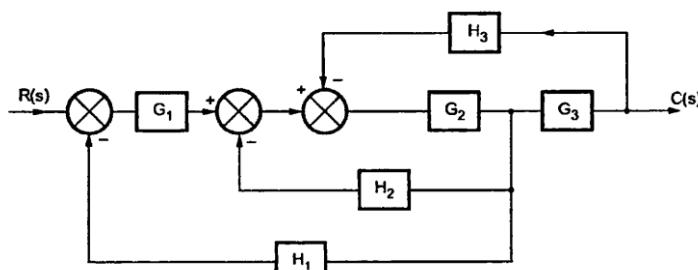
September / October 2023 Semester End Main Examinations

Programme: B.E.

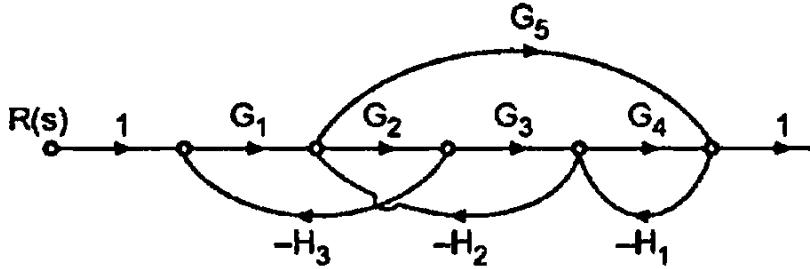
Branch: ES CLUSTER (EEE/ECE/EIE/ETE)

Course Code: 22ES4ESCST

Course: Control Systems



Semester: IV

Duration: 3 hrs.


Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Draw the equivalent mechanical system if the system shown in fig.1(a) Write the set of equilibrium equation. Obtain F-V and F-I analogous circuits.	CO3	PO2	08
		 fig.1(a)			
	b)	Explain (i) lead compensator (ii) lag compensator.	CO1	-	08
	c)	Distinguish between open loop and closed loop control system.	CO1	-	04
		OR			
2	a)	Obtain the transfer function $C(s)/R(s)$ for the block diagram shown in fig.2.(a) using block diagram reduction technique.	CO2	PO1	10
		 fig.2. (a)			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Obtain $C(s)/R(s)$ using Mason's Gain Formula of the system shown in fig.2(b)	CO3	PO2	10
		<p>fig.2.(a)</p>			
		UNIT - II			
3	a)	Derive the expressions for peak time and rise time in term of ω_n and ζ for a second order control system.	CO2	PO1	10
	b)	A unity feedback system is characterized by open-loop transfer function $G(s) = \frac{K}{s(s+10)}$. Find the value of K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for unit step input.	CO3	PO2	10
		UNIT - III			
4	a)	Define the following of Root Locus plot with a suitable example. i) Asymptote ii) Centroid iii) Breakaway points iv) Angle of Departure.	CO1	-	08
	b)	Sketch the root locus diagram of a control system having $G(s)H(s) = \frac{K}{s(s+3)(s^2+3s+3)}$	CO3	PO2	12
		UNIT - IV			
5	a)	Sketch Bode plot for the transfer function $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$. Determine the value of K for the gain cross-over frequency to be 5 rad/sec.	CO3	PO2	14
	b)	Explain procedure for Nyquist plot and state Nyquist stability criterion.	CO1	-	06
		OR			
6	a)	Construct Nyquist plot and comment on stability for a unity feedback control system $G(s) = \frac{40}{(s+4)(s^2+2s+2)}$	CO3	PO2	10
	b)	Explain the following: i) Gain cross-over frequency. ii) Phase cross-over frequency. iii) Gain Margin. iv) Phase Margin. v) stability of the control system based on the relation between gain margin and phase margin	CO1	-	10

UNIT - V					
7	a)	<p>Obtain the state space representation in phase variable form for the system represented by</p> $\frac{d^4y}{dt^4} + 20\frac{d^3y}{dt^3} + 45\frac{d^2y}{dt^2} + 18\frac{dy}{dt} + 100y = 10\frac{d^2u}{dt^2} + 5\frac{du}{dt} + 100u$ <p>with y as output and u as input</p>	CO2	PO1	08
	b)	<p>Obtain the state model for the given transfer function of a system</p> $\frac{Y(s)}{R(s)} = \frac{(s+2)(s+3)}{s(s+1)(s^2+9s+20)}$	CO2	PO1	08
	c)	<p>Define the following (i) State (ii) State variables (iii) State space (iv) State vector</p>	CO1	-	04

B.M.S.C.E. - EVEN SEM 2022-23