

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: ES CLUSTER (EC / ET / EI)

Duration: 3 hrs.

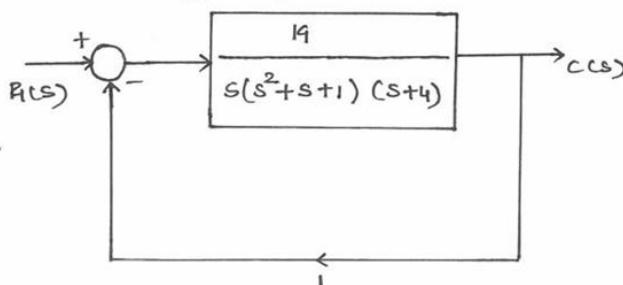
Course Code: 23ES4ESCST

Max Marks: 100

Course: Control Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Reduce the given block diagram and find the transfer function	CO 1	PO1	10
UNIT - II					
2	a)	Explain the steady state error and static error constant with relevant equations	-	-	10
	b)	A unity feedback system is characterized by open loop transfer function $G(S) = k / (s^2 + 10s + k)$ Determine the gain k , so that the system will have a damping ratio of 0.5. Also find the settling time for 5% tolerance and rise time for unit step input.	CO 2	PO2	10

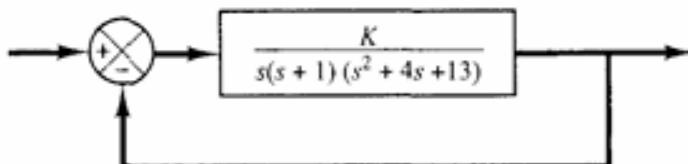

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

3 a) Sketch the root locus for the open loop transfer function and find the value of 'k' for stability

$$G(s) = \frac{K(s+1)}{s^2(s+10)} ; H(s) = 1$$

b) Find the range of K for stability using RH criterion.


OR

4 a) The open loop Transfer function of a unity feedback system is given by

$$G(s) = \frac{K(s+3)}{s(s^2+2s+3)(s+5)(s+6)}$$

Find the value of 'K' of which the closed loop system is stable

b) Sketch the root locus for the system shown in below figure.

UNIT - IV

5 a) Consider a unity feedback control system under proportional control.

$$G(s) = \frac{5}{s(s+1)(s+5)}$$

Draw the polar plot for the function shown.

	b)	<p>A system with unity feedback and open loop gain function is given as</p> $G(S) = \frac{k}{S(S + 2)(S + 4)}$ <p>Draw the Bode plot and find k for gain margin=20dB</p>	CO 2	PO2	12
		OR			
6	a)	<p>An open loop gain function of is given as</p> $G(S) = \frac{14400(5 + S)}{S^2(20 + S)(100 + S)}$ <p>Draw the Bode plot and find gain crossover frequency, phase crossover frequency, gain margin and phase margin.</p>	CO 2	PO2	12
	b)	Discuss the rules for drawing Nyquist plots with a simple example	CO 1	PO1	8
		UNIT - V			
7	a)	<p>Obtain the state model for an electrical system shown in below figure</p>	CO 2	PO2	10
	b)	Represent the differential equation given below in a state model	CO 2	PO2	10
		$\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + 6 \frac{dy}{dt} + 7y = 2u(t)$			
