

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 23ES4ESCST

Course: Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Define Transfer function. Give difference between open loop and closed loop transfer function. Find the transfer function of the given electrical network shown in figure 1 below	CO1	PO1	10
	b)	<p>Find the transfer function of the system shown in figure 2 using block diagram reduction technique only.</p> <p>figure 1</p>	CO1	PO1	10
OR					
2	a)	Find the transfer function of the following system using block diagram approach	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Find the transfer function of the following system represented by SFG using Mason's Gain formula.</p>	CO1	PO1	10
		UNIT – II			
3	a)	<p>Determine the time response of First order system with ramp input. Draw its response curve.</p>	CO1	PO1	10
	b)	<p>A second order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}$</p> <p>Find its rise time, peak time, peak overshoot and settling time if subjected to unit step input. Also find expression for its output response.</p>	CO1	PO1	10
		OR			
4	a)	<p>Represent step, ramp and parabolic function mathematically. Determine the step, ramp and parabolic error constants of the following unity feedback control system.</p> $G(s) = \frac{100}{(1+0.4s)(1+5s)}$	CO1	PO1	10
	b)	<p>A unity feedback system has $G(s) = \frac{K}{s(s+1)(0.5s+1)}$ and $r(t) = 5t$. (i) Determine the steady state error if $K = 1.5$. (ii) Also find the minimum value of K if the steady state error ≤ 0.1 for a unit ramp input.</p>	CO1	PO1	10
		UNIT – III			
5	a)	<p>Determine the stability of the characteristic equation $3S^4 + 10S^3 + 5S^2 + 5S + 3 = 0$ Using Routh stability criterion.</p>	CO 2	PO2	5
	b)	<p>A unity feedback control system is characterized by open loop transfer function.</p> $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$ <p>Using Routh criterion, calculate the range of values of K for the system to be stable.</p>	CO 2	PO2	5
	C)	<p>Sketch the complete root locus for the following system, comment on stability.</p> $G(s)H(s) = \frac{K(s+5)}{(S^2 + 4S + 20)}$	CO 2	PO2	10
		OR			

	6	a)	<p>A unity feedback control system is characterized by open loop transfer function</p> $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$ <p>Using Routh criterion, Calculate the range of values of K for the system to be stable.</p>	CO 2	PO2	5
		b)	<p>The characteristic equation of feedback control system is</p> $S^4 + 20S^3 + 15S^2 + 2S + K = 0$ <p>Determine the range of value of K for the system to be stable and can be the system be marginally stable? If so find the required value of K and the frequency of sustained oscillations.</p>	CO 2	PO2	5
		c)	<p>The Transfer function of a unity feedback system is given by</p> $G(s) = \frac{K}{s(s+4)(s+5)}$ <p>Sketch the root locus as K varies from zero to infinity. Comment on stability.</p>	CO 2	PO2	10
			UNIT – IV			
7	a)		<p>Sketch the polar plot for the function</p> $G(s) = \frac{1}{(1+sT_1)(1+sT_2)}$	CO 2	PO2	10
	b)		<p>The open loop transfer function of closed loop system is</p> $G(s)H(s) = \frac{4S+1}{S^2(S+1)(2S+1)}$ <p>Plot the Nyquist plot and determine stability using Nyquist criterion</p>	CO 2	PO2	10
			OR			
8	a)		<p>For a given open loop transfer function construct Bode plot and determine the value of K that will result in a phase margin of 45°.</p> $G(s)H(s) = \frac{250K}{s(s+5)(s+50)}$	CO 2	PO2	12
	b)		<p>Find the open loop transfer function of system whose approximate Bode plot is shown in figure below.</p>	CO 2	PO2	8

UNIT – V

9	a)	From the given state space model, obtain the Transfer function. $A = \begin{bmatrix} -5 & -6 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = 0$	CO 1	POI	10
	b)	Derive the state model for the below given transfer function. $\frac{Y(s)}{U(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$	CO 1	POI	10
		OR			
10	a)	A system is described by $\dot{x} = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix}x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}u$ $y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}x$ Find the transfer function	CO 1	POI	10
	b)	Represent the differential equation given below in a state model $\frac{d^3y(t)}{dt^3} + 3\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 7y(t) = 2u(t)$	CO 1	POI	10
