

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Cluster (EEE/EIE/ECE/ETE)

Course Code: 19ES4ESCST

Course: Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Define transfer function of a system. List the differences between open and close loop control system.	CO1	PO1	08
	b)	For the mechanical rotational system shown in Fig. 1 (b), obtain (i) Differential equations, (ii) T-V analogous circuit and (iii) T-I analogous circuit.	CO2	PO2	12
Fig 1b					
OR					
2	a)	Draw the F-V & F-I analogous circuits for the given mechanical system shown Fig.2a and starting from the basics write the equations for both systems.	CO2	PO2	12
Fig.2a					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

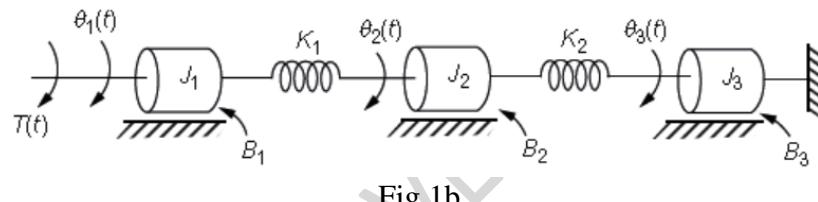


Fig 1b

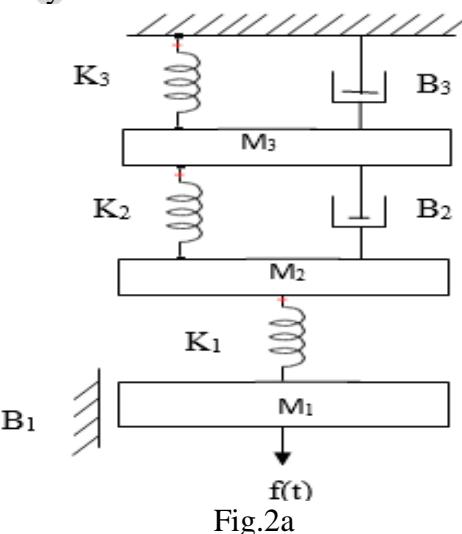


Fig.2a

	b)	Using Mason's gain formula, obtain the transfer function for the given Fig.2b	CO2	PO2	08
		<p>Fig.2b</p>			
		UNIT - II			
3	a)	The block diagram of the system is shown in Fig. 3a. Determine the transfer function for the system using block diagram reduction technique.	CO2	PO2	10
		<p>Fig. 3a</p>			
3	b)	Define any three time domain specifications with a neat diagram indicating the response of a second order system subjected to a unit step input.	CO2	PO2	10
4		OR			
	a)	For the unity negative feedback system with forward path gain $G(S) = \frac{50}{s(s+5)}$, find <ul style="list-style-type: none"> i) Percentage overshoot for a unit – step input ii) Setting time for a unit step input and iii) Steady state error for an input defined by the polynomial $r(t) = 2+4t+6t^2, t \geq 0$ 	CO2	PO2	10
	b)	The open loop transfer function of a feedback control system is given by $G(S)H(S) = \frac{K}{s(s+4)(s^2+2s+2)}$, Find the stability of the system when $K=12$ and find the range of the value of K for stability.	CO2	PO2	10

UNIT - III					
5	a)	<p>The characteristic equation of a feedback system is given as</p> <p>i) $F(s) = s^4 + 12s^3 + 69s^2 + 198s + (200 + k) = 0$</p> <p>ii) $F(s) = s^5 + 6s^4 + 15s^3 + 30s^2 + 44s + 24 = 0$</p> <p>Examine the range of values of gain K, using Routh's table for the system to be stable</p>	<i>CO3</i>	<i>PO4</i>	10
	b)	<p>Sketch the root locus of the system whose loop transfer function is given by</p> $G(s)H(s) = \frac{K(s+a)}{s(s^2+2s+2)}, \quad a = -4.$ <p>Comment on the stability of the system</p>	<i>CO3</i>	<i>PO4</i>	10
6	OR				
	a)	<p>A unity feedback control system is characterized by open loop transfer function</p> $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$ <p>Using Routh criterion, Calculate the range of values of K for the system to be stable.</p>	<i>CO3</i>	<i>PO4</i>	10
	b)	<p>The Transfer function of a unity feedback system is given by</p> $G(s) = \frac{K}{s(s+4)(s+5)}$ <p>Sketch the root locus as K varies from zero to infinity. Comment on stability.</p>	<i>CO3</i>	<i>PO4</i>	10
UNIT - IV					
7	a)	Define Gain Crossover Frequency, Phase Crossover Frequency, Phase Margin and Gain Margin.	<i>CO3</i>	<i>PO4</i>	06
	b)	Comment on stability using Nyquist criterion for the system having $G(s)H(s) = \frac{50}{(1+s)(2+s)}$	<i>CO3</i>	<i>PO4</i>	08
	c)	The loop transfer function of a unity feedback system is given by $G(s)H(s) = \frac{8}{(1+s)(2+s)}$. Sketch the polar plot for the system and comment on the stability of the system.	<i>CO3</i>	<i>PO4</i>	06
	OR				
8	a)	<p>Sketch the Bode plot for the transfer function</p> $G(S) = \frac{10k}{s(1+0.05s)(1+0.1s)}$ <p>Determine the values of K such that</p> <p>(i)GM=20dB (ii)PM=10°</p>	<i>CO3</i>	<i>PO4</i>	12
	b)	Explain the procedure of Nyquist Plot.	<i>CO3</i>	<i>PO4</i>	08

UNIT – V

9

a)

Determine the state-space model for the electrical system shown in Fig. 7a

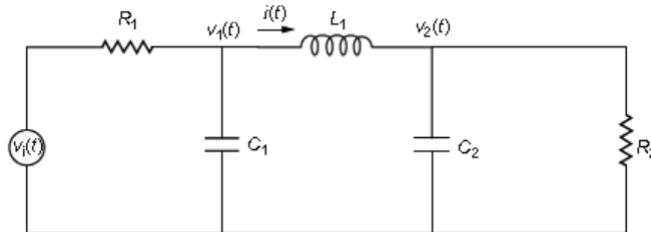


Fig. 7a

b)

Find the state equation and output equation for the system given by

$$\frac{Y(s)}{U(s)} = \frac{(s^3 + 5s^2 + 6s + 1)}{(s^3 + 4s^2 + 3s + 3)}$$

OR

10

a)

A system is described by

$$\dot{x} = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix}x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}u$$

$$y = [1 \ 1 \ 1]x$$

Find the transfer function

b)

Obtain the transfer function for the state-space representation of a system given by

$$A = [0 \ 1 \ -1 \ -4] \ B = [1 \ 0] \ C = [1 \ 0] \ D = [0]$$

CO3

PO4

10

CO3

PO4

10

CO3

PO4

10

CO3

PO4

10
