

B.M.S. College of Engineering, Bengaluru-560019

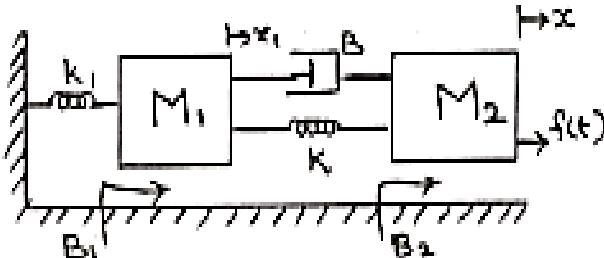
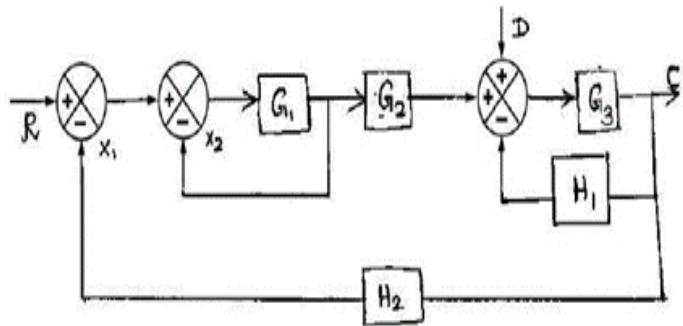
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

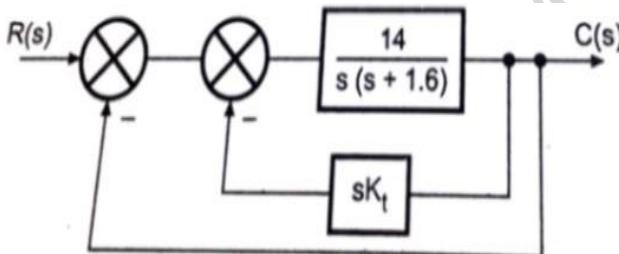
Programme: B.E.

Branch: ES CLUSTER (EEE/ECE/EIE/ETE)

Course Code: 22ES4ESCST



Course: Control Systems

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate between open-loop and closed-loop control systems, highlighting their key characteristics and providing an example to illustrate their difference.	CO1	-	08
	b)	Write the differential equations governing the mechanical translational system as shown in figure 1b and determine the transfer function.	CO2	PO1	12
		Figure 1b			
		OR			
2	a)	Define signal flow graph and explain Mason Gain's formula	CO1	-	8
	b)	For the block diagram shown in figure 1b, find the output C due to R under the following conditions i) D=0 ii) R=0	CO2	PO1	12
		Figure 1b			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive the output expression and draw the response of first order system for unit step input.	CO2	PO1	8
	b)	With suitable block diagrams and equations, explain the following types of controllers employed in control systems: a) Proportional controller b) Proportional-plus-integral controller, c) PID controller	CO1	-	12
OR					
4	a)	A Unity Feedback System Has $G(s) = \frac{40}{(s+2)(s+1)(s+4)}$ Determine (i) Type of the system (ii) All error coefficients and error for step input with magnitude 4.	CO3	PO2	10
	b)	The system shown in figure 4b uses a rate feedback controller. Determine the tachometer constant K_t so as to obtain the damping ratio as 0.5. Calculate corresponding T_p , M_p , W_d , T_s .	CO3	PO2	10
		figure 4b			
UNIT - III					
5	a)	Determine the range of K for stability of unity feedback system using Routh stability criterion whose transfer function	CO3	PO2	6
		$\frac{C(S)}{R(S)} = \frac{K}{S(S^2 + S + 1)(S + 2) + K}$			
	b)	Sketch the root locus for the open loop transfer function of unity feedback control system given below.	CO3	PO2	14
		$G(s) = \frac{k}{s(s^2 + 4s + 13)}$			
OR					
6	a)	Plot The Root Locus for the system having $G(s)H(s) = (K(S^2 + 4S + 20))/(S(S+3))$	CO3	PO2	10
	b)	Analyze the equation and examine the stability of system using Routh's Criterion a) $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$ b) $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 15 = 0$	CO3	PO2	10

UNIT - IV					
7	a)	<p>A unity feedback control system is to work under Proportional Control. The process transfer function is described as follows:</p> $G(s) = \frac{1}{s^3 + 2s^2 + 3s + 4}$ <p>Apply the Nyquist criterion to determine the system closed loop stability.</p>	CO3	PO2	14
	b)	<p>Sketch the polar plot for the given transfer function and determine the points of intersection</p> $G(s)H(s) = \frac{1}{(1 + 10s)}$	CO3	PO2	06
OR					
8	a)	<p>Sketch the bode plot for the following transfer function and determine the phase margin & gain margin</p> $G(s)H(s) = \frac{20}{s(1+3s)(1+4s)}$	CO3	PO2	14
	b)	<p>Explain gain margin and phase margin of control system with respect to stability.</p>	CO1	-	06
UNIT - V					
9	a)	<p>Obtain the state model of the system described by the following transfer function</p> $\frac{Y(s)}{U(s)} = \frac{5}{s^2 + 6s + 7}$	CO3	PO2	10
	b)	<p>Obtain the transfer function model for the following state space system</p> $A = \begin{bmatrix} 1 & 1 \\ -6 & -5 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = [0]$	CO3	PO2	10
OR					
10	a)	<p>$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ Find the transfer function of the given State model</p>	CO3	PO2	10
	b)	<p>Derive linear time invariant system state model equation.</p>	CO3	PO2	06
	c)	<p>Define the following</p> <p>a) state b) state variable c) state vector d) state space</p>	CO1	-	04
