

B.M.S. College of Engineering, Bengaluru-560019

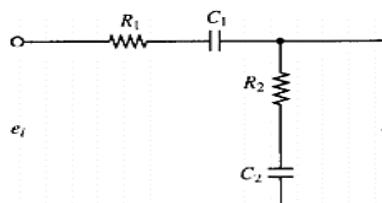
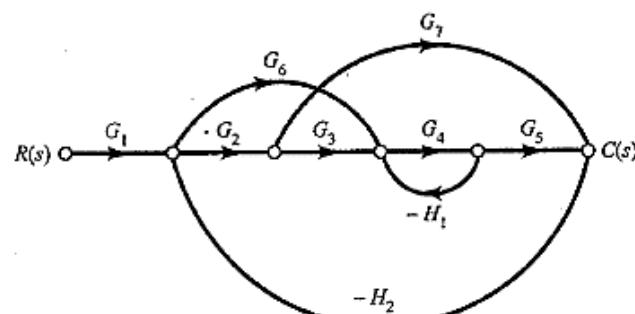
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: ES Cluster (ECE/ ET/EIE)



Duration: 3 hrs.

Course Code: 23ES4ESCST

Max Marks: 100

Course: CONTROL SYSTEMS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the Transfer function for the circuit shown in figure 1a.	1	1	6
		<p>figure 1a</p>			
	b)	Using Mason's Formula, Find the Transfer function $C(s)/R(s)$ for the signal flow graph shown in figure 1b.	1	1	8
		<p>figure 1b</p>			
	c)	Write any 6-block diagram reduction techniques.	-	-	6
		OR			
2	a)	For the two-stage RC low-pass filter shown in figure 2a find the transfer function.	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

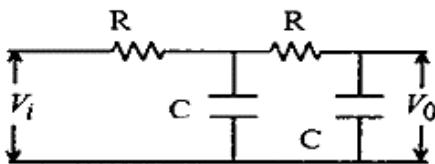


figure 2a

b) Represent the block diagram given in Figure 2b using the signal flow graph and find the transfer function of the system using Mason's gain formula.

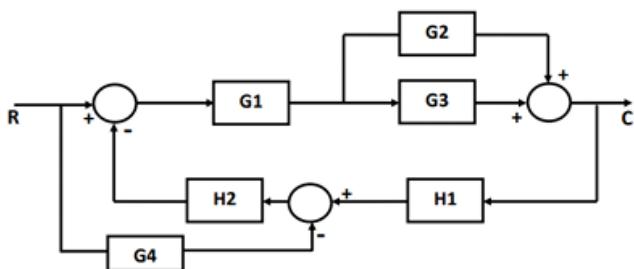


Figure 2b

c) Give one example of open loop electrical system and closed loop electrical system with proper justification.

UNIT - II

3 a) A unity feedback system is characterized by an open-loop transfer function

$$G(S) = \frac{K}{S(S + 10)}$$

Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for a unit-step input.

b) Explain the steady state error and static error constant with relevant equations.

c) Draw the output response of a second order control system and mark all time response parameters.

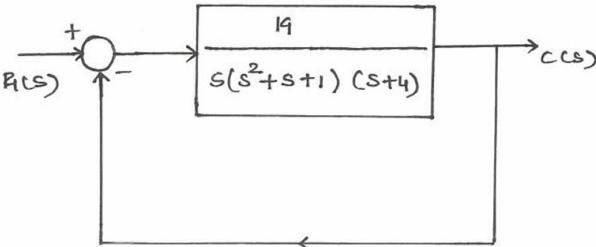
OR

4 a) Derive an expression for output response of a first order control system for a unit step input. Draw the output response.

b) A unity feedback system is characterized by an open-loop transfer function.

$$G(S) = \frac{9}{S(S + 2)}$$

Determine its natural frequency, damped frequency, settling time, peak overshoot and time to peak overshoot for a unit-step input.


1 1 8

6

4

8

8

	c)	Determine the unit step response of the system if closed loop poles of a negative feedback system are located on real axis at -2 and -1 of S plane.	2	2	4
		UNIT - III			
5	a)	Sketch the root loci for the unity feedback system whose open loop gain is given by	2	2	12
		$G(S) = \frac{K}{S(S + 1)(S^2 + 4S + 13)}$			
	b)	Find the range of k using RH criteria for the system shown in figure 5b to be stable.	2	2	8
		figure 5b			
		OR			
6	a)	Sketch the root loci for the unity feedback system whose open loop gain is given by	2	2	12
		$G(S) = \frac{K(S + 1)}{S^2(S + 3.6)}$			
	b)	Using RH criteria determine whether the stability of the system having characteristic equation $S^4 + 10S^3 + 36S^2 + 70S + 75 = 0$ and has roots more negative than $S = -2$	2	2	8
		UNIT - IV			
7	a)	Construct Bode plot for the given function and determine Phase Margin and Gain Margin	2	2	10
		$G(s) = \frac{80}{s(s + 2)(s + 20)}$			
	b)	Sketch the polar plot of the given function	2	2	10
		$G(S)H(S) = \frac{1}{S(S + 1)}$			
		OR			
8	a)	Using Nyquist stability criterion, Investigate the stability of a closed-loop system whose open-loop transfer function is given by,	2	2	10

			$G(S)H(S) = \frac{10}{(S+2)(S+1)}$			
	b)		Draw Bode plot and Nyquist plot for the transfer function $G(S)H(S) = \frac{1}{(S+1)}$	2	2	10
UNIT - V						
9	a)		Represent the differential equation given below in a state model $\frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + 6 \frac{dy}{dt} + 7y = 2u(t)$	1	1	10
	b)		A state variable description of a system is given by the matrix equation Find (i) The Transfer function (ii) The State transition matrix (iii) State diagram $\dot{X} = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$ $Y = [1 \ 1] X$	<i>1</i>	<i>1</i>	10
			OR			
10	a)		Obtain the state model of the system whose transfer function is given by $\frac{Y(s)}{U(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$	1	1	10
	b)		Discuss state space model with an example. List the Advantages and Disadvantages of State Space Analysis. What are the applications of State Space Analysis?	1	1	10

B.M.S.C.E.