

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September / October 2024 Supplementary Examinations

**Programme: B.E.**

**Branch: ES Cluster-EE, ECE**

**Course Code: 19ES4CCLIC**

**Course: Linear Integrated Circuits**

**Semester: IV**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>   |    |                                                                                                                                                                                                                                         | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|
| 1                 | a) | Draw the equivalent circuit of op-amp. List ideal characteristics of op-amp.                                                                                                                                                            | CO1       | PO1       | <b>04</b>    |
|                   | b) | Design a full wave precision rectifier circuit to get a positive pulsating DC output and explain its working. Draw the necessary waveforms.                                                                                             | CO1       | PO2       | <b>08</b>    |
|                   | c) | For an inverting op-amp amplifier circuit $R_1 = 10 \text{ k}\Omega$ , $R_2 = 100 \text{ k}\Omega$ , $V_i = 1\text{V}$ , $R_L = 25 \text{ k}\Omega$ Find (i) $i_1$ (ii) $v_o$ (iii) $i_L$ (iv) Total current $I_o$ into the output pin. | CO1       | PO1       | <b>08</b>    |
| <b>OR</b>         |    |                                                                                                                                                                                                                                         |           |           |              |
| 2                 | a) | Explain working of instrumentation amplifier, obtain an expression for output voltage                                                                                                                                                   | CO1       | PO1       | <b>08</b>    |
|                   | b) | Explain the working of 'voltage to current' converter with grounded load.                                                                                                                                                               | CO1       | PO1       | <b>06</b>    |
|                   | c) | With a neat circuit diagram and waveforms, explain the working of peak detector circuit.                                                                                                                                                | CO1       | PO1       | <b>06</b>    |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                                                                         |           |           |              |
| 3                 | a) | With a neat circuit diagram, explain the working of Wein bridge oscillator.                                                                                                                                                             | CO2       | PO1       | <b>06</b>    |
|                   | b) | Design an astable multivibrator using op-amp to generate a square wave of frequency 1 KHz and DC supply voltage of $\pm 12\text{V}$ . Write the output waveforms.                                                                       | CO2       | PO2       | <b>08</b>    |
|                   | c) | Design a RC phase shift oscillator for a frequency of 1 KHz, assume $C = 0.01 \mu\text{F}$                                                                                                                                              | CO2       | PO2       | <b>06</b>    |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                         |           |           |              |
| 4                 | a) | Explain the operation of a series voltage regulator, and any two of its Important performance parameters.                                                                                                                               | CO3       | PO1       | <b>08</b>    |
|                   | b) | Design a II order Butterworth LPF for a cut-off frequency of 2KHz                                                                                                                                                                       | CO3       | PO2       | <b>06</b>    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |    |                                                                                                                                                     |     |     |           |
|---|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | c) | Discuss the technique of realizing higher order filters using lower-order filters.                                                                  | CO3 | PO1 | <b>06</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                    |     |     |           |
| 5 | a) | Define following specifications of D to A converter with suitable illustrations<br>(i) Resolution (ii) Monotonicity (iii) Differential nonlinearity | CO4 | PO1 | <b>06</b> |
|   | b) | A 8 bits D to A converter has a resolution of 10 mv/bit. Find the analog output voltage for inputs i) 10001010 ii) 01100011                         | CO4 | PO2 | <b>04</b> |
|   | c) | Explain a 4 bits R-2R DAC, derive an expression for the output voltage in terms of binary inputs.                                                   | CO4 | PO1 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                           |     |     |           |
| 6 | a) | Implement a 2-bit flash type of A to D converter and explain its operation.                                                                         | CO4 | PO2 | <b>06</b> |
|   | b) | Differentiate between open-loop and closed-loop type ADCs with an example for each type.                                                            | CO4 | PO1 | <b>04</b> |
|   | c) | Explain the operation of Successive approximation ADCs, with relevant illustrations.                                                                | CO4 | PO1 | <b>10</b> |
|   |    | <b>UNIT - V</b>                                                                                                                                     |     |     |           |
| 7 | a) | With neat functional block diagram explain operation of 555 timer. Explain all the pin functions                                                    | CO5 | PO1 | <b>08</b> |
|   | b) | Design a Monostable multivibrator using op-amp to obtain a pulse of width 10ms. Explain the operation                                               | CO5 | PO1 | <b>08</b> |
|   | c) | Briefly explain the application of PLL as a frequency multiplier.                                                                                   | CO5 | PO1 | <b>04</b> |

\*\*\*\*\*