

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 19ES4CCLIC

Course: Linear Integrated Circuits

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	The specifications of electronic systems using op amp 741 are given in terms of the steady-state characteristics. Discuss the DC characteristics to be considered with typical values	CO1	PO1	08
	b)	Explain the circuit of a voltage to current converter for grounded load and floating load	CO1	PO1	06
	c)	Find V_o for the adder subtractor shown in fig 1c	CO2	PO1	06
fig 1c					
OR					
2	a)	Discuss Frequency compensation for an op amp	CO1	PO1	06
	b)	The 741C is used as an inverting amplifier with a gain of 50. The sinusoidal input has a variable frequency and maximum amplitude of 20mv peak. What is the maximum the frequency of input at which output will be undistorted? Assume that the amplitude is initially nulled.	CO2	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Analyze the waveforms and suggest a circuit to obtain the positive pulsating DC output shown in fig 2c.</p> <p>fig 2c</p>	CO3	PO2	08
		UNIT - II			
3	a)	Discuss with neat circuit ,equations and waveforms the working of Schmitt trigger	CO1	PO2	10
	b)	Obtain an equation for frequency of oscillation and gain for sustained oscillations for Wein bridge oscillator	CO2	PO2	10
		OR			
4	a)	Derive an equation for obtaining amplitude and frequency of the Astable multivibrator using analog integrated device.	CO2	PO1	09
	b)	Design a Schmitt trigger to obtain UTP= 6v and LTP=3v, Op amp used is 741, $V_{sat} = \pm 14v$, assume $R_2 = 1k\Omega$	CO3	PO2	06
	c)	With a neat circuit,explain the working of an inverting comparator	CO1		05
		UNIT - III			
5	a)	Explain the working of an op amp series regulator. List the characteristic of three terminal linear regulators	CO 1	-	10
	b)	Design a first order unity low pass filter at a cut off frequency of 2kHz with a pass band gain of 2. Assume $C= 0.1\mu F$.	CO3	PO2	10
		OR			
6	a)	<p>Analyze the waveform shown, sketch a circuit using an op amp to obtain the output shown, also derive an equation for its transfer function.</p>	CO2	PO1	10
	b)	Design a first order High pass filter having an upper cut off frequency of 2KHz with a pass band gain of 2. Also plot its frequency response.	CO3	PO2	10

UNIT - IV					
7	a)	Sketch the basic schematic of DAC. Also discuss the following specifications of DAC, (i) monotonicity (ii) settling time	CO2	PO1	07
	b)	Explain the working of a Successive approximation ADC	CO2	PO1	08
	c)	What output voltage would be produced by a D/ A converter whose output voltage range is 0V to 10V and whose binary number is (i) 01 (for a 2- bit DAC) (ii)1011 (for a 4- bit DAC) (iii) 11111001 (for an 8- bit DAC)	CO2	PO1	05
OR					
8	a)	Sketch the basic schematic of ADC. Also discuss the following specifications of ADC, (i) Resolution and (ii) conversion time	CO2	PO1	07
	b)	Sketch the circuit and discuss the working principle for the R-2R digital to analog converter.	CO2	PO1	08
	c)	The resolution of a 4 -bit counting ADC is 0.6 volts. For an analog input of 5.5volts, what will be the output of the ADC?	CO2	PO1	05
UNIT - V					
9	a)	Sketch the basic block of PLL. Also discuss the following specifications of PLL, (i) Lock in range and (ii) pull in time .	CO2	PO1	10
	b)	Explain the working of 555 timer as an astable multivibrator with a neat circuit diagram.	CO2	PO1	10
OR					
10	a)	Explain the working of 555 timer as a Monostable multivibrator with a neat circuit diagram.	CO2	PO1	10
	b)	Describe the applications of PLL with neat block diagrams	CO1		10
