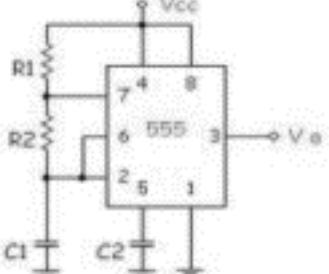


B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU


June 2025 Semester End Main Examinations**Programme: B.E.****Semester: IV****Branch: ES CLUSTER****Duration: 3 hrs.****Course Code: 19ES4CCLIC****Max Marks: 100****Course: Linear Integrated Circuits**

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Analyze the working of V to I converter with, a) Floating load and b) Grounded load. Derive the I_L =Load current. Assume that $R_f=10\text{k}\Omega$, $R_L=2\text{K}\Omega$ & $V_i=0.5\text{V}$ for the above circuit, find the load current I_L and V_{max} .	<i>CO 3</i>	<i>PO2</i>	08
	b)	Explain the effect of input offset current on total output offset voltage for an inverting op-amp.	<i>CO 1</i>	<i>PO1</i>	05
	c)	Realize a precision non-saturating half-wave rectifier and explain its operation with relevant waveforms and transfer curve.	<i>CO1</i>	<i>PO1</i>	07
OR					
2	a)	An inverting amplifier using 741C must have a flat response up to 40 kHz. The gain of the amplifier is 10. What maximum peak-to-peak input signal can be applied without distorting the output? Slew Rate of the op-amp is $0.5\text{V}/\mu\text{s}$.	<i>CO 1</i>	<i>PO1</i>	06
	b)	Design an instrumentation amplifier with circuit diagram for a gain of 1000, also derive an expression for the output.	<i>CO 4</i>	<i>PO3</i>	08
	c)	Explain the working of sample and hold circuit with input and output waveform.	<i>CO1</i>	-	06
UNIT-II					
3	a)	Design a triangular wave generator so that $f_o=2\text{KHz}$ and $V_{o(\text{p-p})}=7\text{V}$. V_{sat} of op-amp = 13.5 V , supply voltages = $\pm 15\text{ V}$.	<i>CO 1</i>	<i>PO1</i>	07
	b)	Apply the comparator concept to design a regenerative circuit with UTP=+4V and LTP=+2 V. Assume sinusoidal input signal and $V_{sat}=\pm 10\text{V}$. Plot the input and output waveforms showing triggering levels. Also plot the hysteresis curve.	<i>CO 2</i>	<i>PO2</i>	07
	c)	With design equations explain the working of RC Phase Shift Oscillator of gain 29. Also design the same to oscillate at 100Hz assuming $C=0.1\mu\text{F}$.	<i>CO2</i>	<i>PO2</i>	06
OR					
4	a)	Derive an equation for obtaining amplitude and frequency of the Monostable multivibrator using analog integrated device.	<i>CO 1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Describe the operation of Schmitt trigger with neat circuit diagram, waveforms. Derive equations for the upper trigger point voltage and lower trigger point voltage.	CO 1		10
		UNIT - III			
5	a)	With functional block diagram of IC723 analyze how it can be used as low voltage regulator? For $V_o=5V$, $R_1=1K\Omega$, $R_2=2.3K\Omega$. Find R_L .	CO 3	PO3	10
	b)	Analyze the working of first order low pass filter for variable gain with circuit diagram & its frequency response. Derive the transfer function.	CO 3	PO2	10
		OR			
6	a)	Compare active and passive filters	CO1		10
	b)	Design a fourth order Butterworth Low pass filter having an upper cut off frequency of 2KHz	CO3	PO2	10
		UNIT - IV			
7	a)	An 8-bit DAC has a resolution of 12mV/bit. Find the analog output voltage for the inputs a)10101101 b)10110010.	CO 2	PO1	04
	b)	Explain the working of a counter type A/D converter with a neat diagram and waveforms. Mention its advantages and disadvantages.	CO 1	-	08
	c)	By applying Successive Approximation technique explain using table and relevant block diagram how op-amp can be used to convert 2 V to its digital equivalent.	CO2	PO1	08
		OR			
8	a)	Explain the working of a sigma delta modulator A/D converter with a neat block diagram.	CO1	-	06
	b)	A 5 bit DAC produces $V_{out}=0.4V$ for a digital input of 00001. Find the value of V_{out} for an input of 11111. What is its resolution? Describe its stair case signal.	CO 2	PO1	06
	c)	Sketch and explain the working of 4-bit R-2R ladder DAC and also an expression for its output voltage.	CO1	PO1	08
		UNIT-V			
9	a)	Analyze the working of a PLL with block diagram, relevant waveforms.	CO 3	PO2	06
	b)	Explain the working of Phase detector and draw the input and output waveform of phase detector.	CO 2	PO2	06

	c)	Analyze the circuit shown in figure 9c. For $V_{CC}=5V$, $R_1 = 6.8K\Omega$, $R_2 = 3.3K\Omega$, $C_1=0.1\mu F$ and $C_2= 0.01\mu F$, calculate the T_{on} , T_{off} , free running frequency f_0 and duty cycle D.	 Fig. 9c	<i>CO3</i>	<i>PO3</i>	08
		OR				
10	a)	Explain the working of 555 timer as a Monostable multivibrator with a neat circuit diagram.		<i>CO2</i>	<i>PO1</i>	10
	b)	Describe the applications of PLL with neat block diagrams		<i>CO1</i>		10
