

B.M.S. College of Engineering, Bengaluru-560019

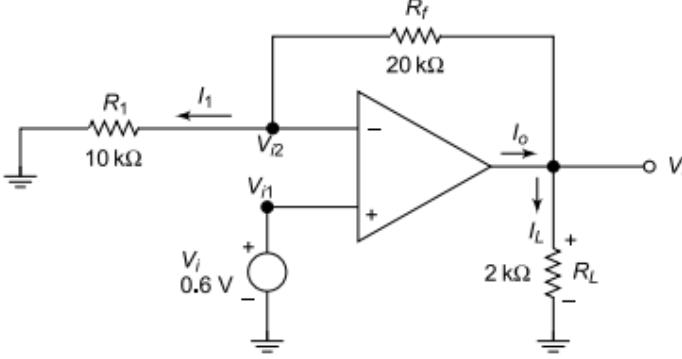
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: EIE/MD

Course Code: 22ES4PCLIC


Course: Linear Integrated Circuits

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Differentiate between the ideal and practical characteristics of an op amp.	CO1		06
	b)	Determine (a) A_v (b) V_o (c) I_L and (d) I_o . for the circuit shown in Fig.1(b)	CO3	PO2	06
		<p>Fig.1(b)</p>			
	c)	Briefly describe the significance of Frequency Compensation in op amp and explain the method to provide frequency compensation.	CO2	PO1	08
OR					
2	a)	Draw and explain the circuit of Instrumentation Amplifier and derive an expression for output voltage	CO2	PO1	08
	b)	Draw the circuit of a capacitor-coupled inverting amplifier and explain its operation.	CO2	PO1	06
	c)	Draw a fundamental Sample-and-Hold circuit. What factors contribute to the hold mode droop in this circuit?	CO2	PO1	06
MODULE - II					
3	a)	Explain the non-inverting comparator, with neat output waveform.			06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Derive an equation for the amplitude and frequency of a Triangular waveform generator using op amp.	CO2	PO1	06
	c)	Explain the operation of an RC phase-shift oscillator. Derive an expression for the frequency of oscillation.	CO2	PO1	08
		MODULE - III			
4	a)	Enumerate the various errors in an ideal integrator circuit. How are these errors minimised?	CO2	PO1	08
	b)	Explain how Notch filter is used for power line noise removal?	CO1		06
	c)	Design a fourth order low pass Butterworth filter having a cut off frequency of 2kHz. Assume $\alpha_1 = 0.765$, $\alpha_2 = 1.848$ and $C = 0.1\mu F$.	CO4	PO3	06
		MODULE - IV			
5	a)	A system uses a 12-bit word to represent the input signal. If the maximum peak-to-peak voltage at the output is set to 4V, find the resolution of the system and the dynamic range.	CO3	PO2	05
	b)	Explain the operation of Successive Approximation ADC with a suitable example,	CO2	PO1	08
	c)	Discuss the applications of DACs and ADCs.	CO2	PO1	07
		OR			
6	a)	Define the following i. Monotonicity ii. Resolution iii. Offset Voltage	CO1		06
	b)	Discuss the operation of a Dual slope A to D converter	CO2	PO1	08
	c)	Consider the R – 2R 4-bit converter and assume that feedback resistance R_f of the op-amp is variable, the resistance $R = 10\text{ k}\Omega$ and $V_R = 10\text{V}$. Determine the value of R_f that should be connected to achieve the following output conditions. (a) The value of 1 LSB at the output is 0.5 V. (b) An analog output of 6V for a binary input of 1000. (c) The full-scale output voltage of 12 V. (d) The actual maximum output voltage of 10 V.	CO3	PO2	06
		MODULE - V			
7	a)	Discuss the block diagram of a PLL with a neat schematic diagram.	CO2	PO1	08
	b)	Explain the Analog phase detector used in PLL	CO2	PO1	08
	c)	Explain how PLL is used for frequency multiplication.	CO2	PO1	04