

B.M.S.College of Engineering, Bengaluru-560019

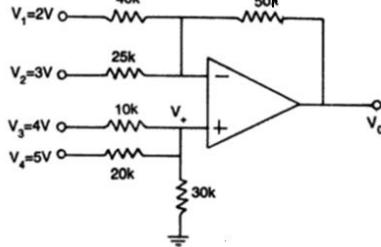
Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

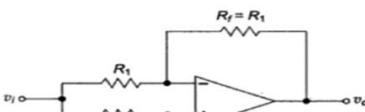
Programme: B.E.

Branch: EIE/MD

Course Code:22ES4PCLIC


Course: Linear Integrated Circuits

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Discuss the DC characteristics of op amp 741 to be considered with typical values for using in electronic systems.	CO2	PO1	07
	b)	Explain the working of a full wave precision rectifier to obtain a positive pulsating output.	CO 2	PO1	07
	c)	The input signal V_i to an op amp is $0.04 \sin(1.13 \times 10^5 t)$, is to be amplified to a maximum extent. How much maximum gain can be obtained by using an op amp with a slew rate of $0.4V/\mu\text{sec}$.	CO3	PO2	06
OR					
2	a)	Find V_o for the adder subtractor shown in Fig(1)	CO3	PO2	06
		 Fig(1)			
	b)	With a neat circuit diagram, discuss the working of a series op amp regulator.	CO2	PO1	07
	c)	Discuss the working of a sample and hold circuit using op amp with neat circuit and waveforms.	CO2	PO1	07
MODULE - II					
3	a)	Describe the working of a Schmitt trigger with neat circuit, equations and waveforms.	CO2	PO1	07
	b)	Explain the working of a monostable multivibrator with neat circuit and waveforms. Also derive equation for its pulse width.	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Design a Wien bridge oscillator using op amp to generate a frequency of 2KHz, use $C=0.05\mu F$	CO4	PO3	05
MODULE - III					
4	a)	Show that $V_o/ V_i = A/ 1+j(f/f_h)$ for a variable gain low pass filter with neat circuit diagram and explain.	CO3	PO2	07
	b)	Design a fourth order low pass Butterworth filter having a cut off frequency of 2kHz. Assume $\alpha_1=0.765$, $\alpha_2=1.848$ and $C=0.1\mu F$.	CO4	PO3	07
	c)	Determine the phase angle and time delay for a circuit shown in Fig(2),for a frequency of 2KHz,assume $R_1=20K\Omega$, $R=39K\Omega$, $R_f=R_1$, and $C=1nF$.	CO3	PO2	06
		 Fig(2)			
MODULE - IV					
5	a)	Explain the following specification for a DAC i. Monotonicity ii. Resolution	CO2	PO1	06
	b)	Discuss the principle of Successive approximation ADC with a neat circuit diagram.	CO2	PO1	08
	c)	A 12 bit DAC has a step size of 8mV.Determine the full scale output voltage and percentage resolution.Also find the output voltage for an input voltage of (100110011101).	CO3	PO2	06
		OR			
6	a)	Calculate the value for LSB, MSB and full scale output for an 8 bit DAC for 0 to 10V range.	CO3	PO2	06
	b)	Discuss the working of a weighted resistor DAC with neat circuit diagram, mention its advantages and disadvantages.	CO2	PO1	08
	c)	An 8 bit A to D converter accepts an input voltage of 0 to 10V range (i) What is the minimum value of input voltage required to generate a change of 1 LSB? (ii) What input voltage will generate all 1s at the A to D output? (iii) What is the digital output for 4.8V?	CO3	PO2	06
MODULE - V					
7	a)	Explain the Basic principle of working of a PLL with neat schematic diagram.	CO2	PO1	08
	b)	Show that for phase detector used in PLL , $K_\phi= 1.59V /rad$, with neat diagram, waveforms and equation.	CO2	PO1	06
	c)	Suggest circuit using PLL for (i) Transmitting binary data by means of two preset carrier frequencies (ii) AM detector	CO2	PO1	06
