

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: ES Cluster (EIE/MD)

Course Code: 23ES4PCLIC / 22ES4PCLIC

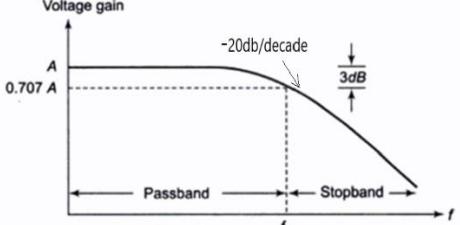
Course: Linear Integrated Circuits

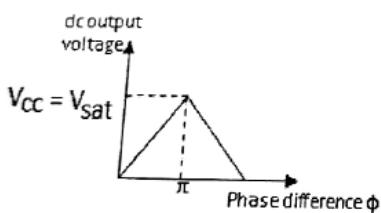
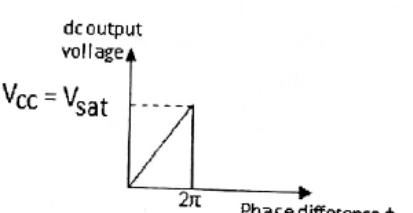
Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


MODULE - I			CO	PO	Marks
1	a)	Discuss the DC characteristics of op amp with typical values	<i>CO1</i>	<i>PO1</i>	08
	b)	Discuss the working of a circuit using op amp to obtain the positive pulsating DC output.	<i>CO1</i>	<i>PO1</i>	06
	c)	A square wave of peak to peak amplitude of 500mv has to be amplified to peak to peak amplitude of 3volts with rise time of 5 μ s or less. Can a 741 be used?	<i>CO2</i>	<i>PO2</i>	06
OR					
2	a)	Discuss Frequency response of an Op amp	<i>CO2</i>	<i>PO2</i>	07
	b)	Explain the working of an I-V converter with a neat circuit diagram.	<i>CO1</i>	<i>PO1</i>	06
	c)	Analyze the waveforms and suggest a circuit to obtain the output shown	<i>CO2</i>	<i>PO2</i>	07
MODULE - II					
3	a)	Derive an equation for obtaining amplitude and frequency of the Astable multivibrator using analog integrated device.	<i>CO2</i>	<i>PO2</i>	10
	b)	Obtain an equation for frequency of oscillation and gain for sustained oscillations for RC phase shift oscillator	<i>CO2</i>	<i>PO2</i>	10
OR					



Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Output

MODULE - II

OR

4	a)	Discuss with neat circuit, Equations and waveforms the working of Schmitt trigger	CO2	PO1	09
	b)	Design and draw the circuit of a Wein bridge oscillator for generating a frequency of 2KHz, assume $C = 0.05\mu F$.	CO3	PO2	06
	c)	With a neat circuit diagram, explain the working of a zero-crossing detector	CO1		05
	MODULE - III				
5	a)	Derive the transfer function of a variable gain High pass filter with relevant circuit and equation.	CO3	PO3	10
	b)	Design a fourth order Butterworth low pass filter having upper cut off frequency of 1KHz, $\alpha_1 = 0.765$ and $\alpha_2 = 1.848$.	CO3	PO3	10
	OR				
6	a)	<p>Analyze the waveform shown, sketch a circuit using an op amp to obtain the output shown, also derive an equation for its transfer function.</p>	CO2	PO1	10
	b)	Design a first order High pass filter having an upper cut off frequency of 2KHz with a pass band gain of 2. Also plot its frequency response.	CO3	PO2	10
	MODULE - IV				
7	a)	Sketch the basic schematic of DAC. Also discuss the following specifications of DAC, (i) monotonicity and (ii) settling time	CO4	PO1	07
	b)	Explain the working of a Counter type ADC	CO4	PO1	08
	c)	A 12-bit DAC has a step size of 8mV. Determine the full-scale output voltage and percentage resolution. Also find the output voltage for an input voltage of 100110011101.	CO4	PO2	05
	OR				
8	a)	Sketch the basic schematic of ADC. Also discuss the following specifications of ADC, (i) Resolution and (ii) conversion time	CO4	PO1	07
	b)	Sketch the circuit and discuss the working principle for the weighted resistor DAC	CO4	PO1	08
	c)	The resolution of a 4-bit counting ADC is 0.6 volts. For an analog input of 5.5volts, what will be the output of the ADC?	CO4	PO2	05
	MODULE - V				
9	a)	Sketch the basic block of PLL. Also discuss the following specifications of PLL, (i) Lock in range and (ii) pull in time.	CO1	PO1	10

	b)	Suggest circuit using PLL for (i) Frequency translation (ii) Frequency division	CO1	PO1	10
		OR			
10	a)	Identify and explain the suitable blocks of PLL which has following transfer characteristics as shown below.	CO2	PO1	10
	b)	<p>Describe the working principle of Voltage Controlled Oscillator with neat block diagram</p>	CO1		10
