

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: EIE/MD

Duration: 3 hrs.

Course Code: 23ES4PCLIC / 22ES4PCLIC

Max Marks: 100

Course: Linear Integrated Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define any four DC characteristics of an operational amplifier and specify their ideal and practical values.	CO2	PO2	08
	b)	With a neat circuit, derive an expression for the gain of an instrumentation amplifier.	CO2	PO2	08
	c)	Explain the working of an I-V converter using Op-amp.	CO3	PO3	04
OR					
2	a)	What are the common errors in practical op-amp circuits and how are they minimized?	CO2	PO2	07
	b)	Design a precision full-wave rectifier using op-amps and explain how it overcomes the diode threshold voltage limitation.	CO3	PO3	07
	c)	What is the highest frequency of a triangular wave of 20V peak to peak amplitude that can be reproduced by an Op amp whose slew rate is $10V/\mu s$? For a sine wave of same frequency, what is the maximum amplitude of output signal that remains undistorted?	CO3	PO3	06
UNIT - II					
3	a)	Explain the working of an inverting Schmitt Trigger with hysteresis. Design a for a UTP = 2V and LTP = -2V. assuming supply voltage = $\pm 12V$.	CO3	PO3	10
	b)	Describe the design and working of a triangular waveform generator.	CO3	PO3	10
OR					
4	a)	Discuss the working of a Wien bridge oscillator. What is the condition for oscillation? Design a Circuit to generate a 10 KHz sinusoidal Signal.	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	With neat diagram, explain the working and applications of a 555 timer/opamp in astable mode and derive an expression for the output frequency.	CO3	PO3	10
		UNIT - III			
5	a)	Explain with neat circuit, waveforms and transfer function, the design a first-order low-pass filter using Op-Amp.	CO3	PO3	10
	b)	Explain the working and application of an all-pass lead or all-pass lag filter.	CO3	PO3	10
		OR			
6	a)	Draw and explain a practical differentiator using an Op-Amp. Also discuss its frequency response.	CO3	PO3	7
	b)	Design a second-order Butterworth low-pass filter for $f_l = 1\text{KHz}$, assume $\alpha = 1.414$.	CO3	PO3	8
	c)	Implement a first order high pass filter and illustrate its frequency response.	CO1	PO1	5
		UNIT - IV			
7	a)	Explain the working of a binary-weighted resistor DAC and derive its output expression.	CO3	PO3	10
	b)	Explain the principle of successive approximation ADC with neat circuit diagram.	CO3	PO3	10
		OR			
8	a)	Describe the R-2R ladder DAC. How does it overcome limitations of binary-weighted DAC?	CO2	PO2	10
	b)	Explain the working of a 3-bit flash ADC with neat circuit and function table	CO2	PO2	10
		UNIT - V			
9	a)	Explain the basic principle of Phase Locked Loop with a neat block diagram.	CO2	PO3	10
	b)	Discuss the working of a Voltage Controlled Oscillator with a neat circuit diagram.	CO2	PO3	10
		OR			
10	a)	Explain the role of Low Pass Filter in a PLL.	CO2	PO2	08
	b)	List and explain applications of PLL in communication and signal processing.	CO2	PO2	12
