

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E.

Branch: ES CLUSTER (EEE/ECE/EIE/ETE/MD)

Course Code: 19ES4CCSAS

Course: SIGNALS AND SYSTEMS

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine whether each of the following signal is periodic. If periodic determine fundamental period. **06**

$$i) x(t) = \cos t + \sin \sqrt{2}t$$

$$ii) x[n] = e^{j(\frac{2\pi}{3})n} + e^{j(\frac{3\pi}{4})n}$$

b) Determine whether the following signal are energy or power signal **06**

$$i) x(t) = t u(t)$$

$$ii) x[n] = 2e^{j3n}$$

c) Find and sketch even and odd component of the following signal **08**

$$i) x(n) = e^{-\left(\frac{n}{4}\right)} u[n]$$

$$ii) x[t] = t \quad 0 \leq t \leq 1$$

$$= 2 - t \quad 1 \leq t \leq 2$$

OR

2 a) A trapezoidal pulse $x(t)$ is defined by **06**

$$x(t) = 5 - t \quad 4 \leq t \leq 5$$

$$= 1 \quad -4 \leq t \leq 4$$

$$= t + 5 \quad -5 \leq t \leq -4$$

$$= 0 \quad \text{otherwise}$$

Is applied to a differentiator having input and output relationship $y(t) = dx(t)/dt$. Sketch the signal $x(t)$, $y(t)$ and $\dot{x}(t)$. Find the energy of the signal $y(t)$

b) Sketch the waveforms **06**

$$i) x(t) = u(t) - u(t - 3)$$

$$ii) x(t) = r(t + 1) - r(t) + r(t - 2)$$

Where $u(t)$ and $r(t)$ are step and ramp signals respectively.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Consider a discrete time signal $x[n] = \{1, 2, -3, -2\}$, where amplitude of the signal at $n=0$ is 2. Express the signal in terms of unit impulse sequence and unit step sequence. 08

UNIT - II

3 a) For the following system, determine whether the system is Linear, time invariant, Memoryless, causal, stable 05

$$i) y[n] = g[n]x[n]$$

$$ii) y(t) = \cos(x(t))$$

b) Define invertible system? Determine whether the following system is invertible 05

$$i) y(t) = 2x(t)$$

$$ii) y[n] = nx[n]$$

c) Evaluate the natural response for the system defined by the following differential equation. $3 \frac{dy(t)}{dt} + 10y(t) = 2x(t)$; $y(0)=3$ 06

d) Represent the following system in Direct form II 04

$$y[n] + \frac{1}{2}y[n-1] - \frac{1}{4}y[n-2] + \frac{1}{3}y[n-3] = x[n] + 3x[n-1] + 2x[n-2]$$

UNIT - III

4 a) A LTI System is characterized by : $h[n] = \left(\frac{3}{4}\right)^n u[n]$ 06

Determine the output of the system at time $n=5, n=10$, when input is $x[n]=u[n]$

b) Find the convolution of $x(t)*h(t)$ if 06

$$x(t) = e^{-3t} \{u(t) - u(t-2)\}$$

$$h(t) = e^{-t}u(t)$$

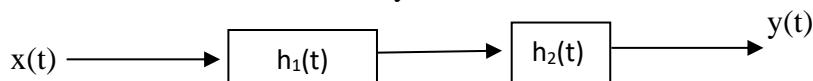
c) Impulse response of a system is given by 08

$$h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} u(t)$$

Find an expression for the frequency response. Plot the magnitude and phase response.

OR

5 a) For each of the impulse response listed below. Determine whether the system is memoryless, causal, and stable 06


$$i) h(t) = e^{-2|t|}$$

$$ii) h[n] = 2u[n] - 2u[n-1]$$

b) The system shown in figure below is formed by connecting two system in cascade. The impulse response of the system are given by 06

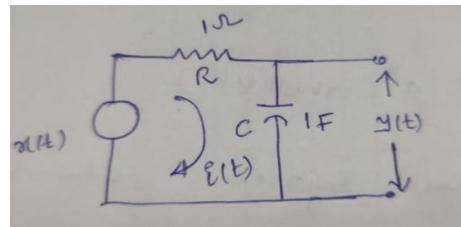
$$i) h_1(t) = e^{-2t}u(t) \quad ii) h_2(t) = 2e^{-t}u(t)$$

i) Find the impulse response $h(t)$ of the overall system
Determine if the overall system is BIBO stable

c) Find the impulse response of the system where output is given by 08

$$y[n] = x[n] + e^{\alpha} y[n-1] \text{ and } y[n]=0 \text{ for } n<0. \text{ Also find the step response}$$

UNIT - IV


6 a) Evaluate the DTFS representation for the signal $x[n] = \cos \frac{\pi}{3} n$ 06

Sketch magnitude and phase spectrum

b) Using partial fraction expansion, determine inverse fourier transfor of 06

$$X(j\omega) = \frac{5j\omega + 12}{(j\omega)^2 + 5j\omega + 6}$$

c) For the network shown, find the response of the system when the input is impulse signal $\delta(t)$ 08

UNIT - V

7 a) Find the z-transform for the following sequence. Locate ROC 06

i) $x[n] = 1 \quad 0 \leq n \leq N-1$
 $= 0 \quad \text{elsewhere}$
 $x[n] = a^n \cos \omega_0 n u[n]$

b) A stable and causal system is described by the difference equation 06

$$y[n] + \frac{1}{4} y[n-1] - \frac{1}{8} y[n-2] = -2x[n] + \frac{5}{4} x[n-1]$$

Find the system impulse response

c) Solve the following difference equation for the given initial condition and input 08

input $y[n] - \frac{1}{9} y[n-2] = x[n-1]$
With $y(-1)=0$, $y(-2)=1$ and $x[n]=3u[n]$
