

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## July / August 2024 Semester End Main Examinations

**Programme: B.E.**

**Branch: ES Cluster**

**Course Code: 19ES4CCSAS**

**Course: Signals and Systems**

**Semester: IV**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I         |    |                                                                                                                                                                                                                                                                                                              | CO  | PO  | Marks |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|
| 1                | a) | Sketch the waveforms<br>1. $X_1(t) = u(t) - u(t-3)$<br>2. $X_2(t) = u(t+2) - 2u(t) + u(t-2)$<br>3. $X_3(t) = r(t+1) - r(t) + r(t-2)$<br>where $u(t)$ and $r(t)$ stands for unit step and unit ramp signal respectively.                                                                                      | CO1 | PO1 | 06    |
|                  | b) | Determine whether the given signals are periodic. Determine the fundamental period if periodic<br>1. $X(n) = \cos [0.125 n\pi]$<br>2. $X(n) \operatorname{Re} \{ \exp (j n\pi /12) \} + \operatorname{Im} \{ \exp (j n\pi /18) \}$<br>3. $X(t) = \cos (2t)$<br>4. $X(n) = \exp (j\pi n/16) \cos [n\pi/17]$ . | CO1 | PO1 | 08    |
|                  | c) | Find and sketch the first order derivative of the following signals<br>1. $x(t) = u(t) - u(t-a); a > 0$<br>2. $y(t) = t[u(t) - u(t-a)] : a > 0$                                                                                                                                                              | CO1 | PO1 | 06    |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                              |     |     |       |
| 2                | a) | Analyze and sketch dependent and independent signal operation with an examples                                                                                                                                                                                                                               | CO1 | PO2 | 10    |
|                  | b) | Evaluate & analyze even and odd signals for the following equations:<br>i). $x(t) = (1+t^3) \cos^3 (10t)$<br>ii). $1+t+3t^2+5t^3+9t^4$                                                                                                                                                                       | CO2 | PO2 | 04    |
|                  | c) | Analyze and Evaluate the average Power or Energy of the following signals after determining whether they are Energy or Power signals.<br>i). $x(n) = e^{j[(\frac{\pi}{3})n + \frac{\pi}{2}]}$ ; ii). $x(t) = \cos^2 \omega_0 t$ , iii). $x(t) = A e^{-\alpha t} u(t), \alpha > 0$                            | CO2 | PO2 | 06    |
| <b>UNIT - II</b> |    |                                                                                                                                                                                                                                                                                                              |     |     |       |
| 3                | a) | a) For the following system illustrate whether the system is Linear, Time invariant, Memory, causal and stable<br>i. $y(n) = g(n) x(n)$<br>ii. $y(t) = x^2(t)$                                                                                                                                               | CO1 | PO2 | 04    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.  
Revealing of identification, appeal to evaluator will be treated as malpractice.

|                   |    |                                                                                                                                                                                                                                                                                                    |     |     |           |
|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|                   | b) | Represent following difference equation in Direct Form-I and Direct form- II block diagram representation.<br>$Y(n)+0.5y(n-1)-0.25y(n-2) +0.33y(n-3)=x(n)+3x(n-1)+2x(n-2)$                                                                                                                         | CO3 | PO2 | <b>08</b> |
|                   | c) | Draw the direct Form-I and direct form-II realizations for the system described by the following equation.<br>$y(n) 5y(n-1)+y(n-2) = 3x(n) - 4x(n-2)$                                                                                                                                              | CO3 | PO3 | <b>08</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                                                                    |     |     |           |
| 4                 | a) | An LTI system is characterized by $h(n) = (3/4)^n u(n)$ . compute the output of the system at time $n=5, -5, 10$ , when the input $x[n]=u[n]$                                                                                                                                                      | CO4 | PO3 | <b>06</b> |
|                   | b) | Find the convolution sum $y[n]$ of the following signal<br>$x[n] = \alpha^n [u(n) - u(n-10)]$<br>$h[n] = \beta^n u[n] \quad 0 < \beta < 1$                                                                                                                                                         | CO4 | PO3 | <b>08</b> |
|                   | c) | Show that<br>i) The convolution of an odd and an even function is an odd function<br>ii) The convolution of two odd functions is an even function.<br>iii) The convolution of two even functions is an even function.                                                                              | CO4 | PO3 | <b>06</b> |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                                                                    |     |     |           |
| 5                 | a) | Given $h(t) = e^{-t}u(t)$ and $x(t) = e^{-3t}\{u(t)-u(t-2)\}$ . Determine $y(t)$ using convolution integral. Also plot $y(t)$ .                                                                                                                                                                    | CO3 | PO2 | <b>06</b> |
|                   | b) | State and prove the following properties of the impulse response<br>i) Commutative property ii) Associative property                                                                                                                                                                               | CO4 | PO3 | <b>08</b> |
|                   | c) | Compute the convolution of $x(n) = u(n-1)$ and $h(n) = a^n u(n-1)$                                                                                                                                                                                                                                 | CO4 | PO2 | <b>06</b> |
| <b>UNIT - IV</b>  |    |                                                                                                                                                                                                                                                                                                    |     |     |           |
| 6                 | a) | Using Convolution Theorem find inverse Fourier transform of $X(jw) = 1/(a+jw)^2$                                                                                                                                                                                                                   | CO3 | PO2 | <b>06</b> |
|                   | b) | The impulse response of the continuous time system is given as<br>$h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} u(t)$<br>Determine the frequency response and plot the magnitude and phase plots                                                                                                          | CO3 | PO2 | <b>07</b> |
|                   | c) | The output of a causal LTI system is related to the input $x(t)$ by the equation<br>$\frac{dy(t)}{dt} + 10y(t) = \int_{-\infty}^{\infty} x(\tau)z(t-\tau)d\tau - x(t).$<br>Where $z(t) = e^{-t}u(t+3\delta(t))$<br>i. Find the frequency response of the system<br>ii. Determine impulse response. | CO3 | PO2 | <b>07</b> |
| <b>UNIT - V</b>   |    |                                                                                                                                                                                                                                                                                                    |     |     |           |
| 7                 | a) | Find the Z-Transform of<br>i) $x[n] = (-3/4)^n u(n) + 2(1/2)^n u(n)$ . Specify its ROC.<br>ii) $x[n] = \sin(\pi n/4) u(n)$ . Determine its ROC.                                                                                                                                                    | CO5 | PO2 | <b>08</b> |

|  |    |                                                                                                                                                                                                                                                                      |     |     |           |
|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|  | b) | Solve the difference equation $y(n)+3y(n-1)=x(n)$ with $x(n)=u(n)$ and the initial condition $y(-1)=1$ using Z-Transform method                                                                                                                                      | CO5 | PO1 | <b>06</b> |
|  | c) | Using appropriate properties find the Z Transform of<br>$i) x(n) = n2^n \sin\left(\frac{\pi}{2}n\right) u(n)$ . Given Z Transform of<br>$\sin\left(\frac{\pi}{2}n\right) u(n) = \frac{z \sin\frac{\pi}{2}}{z^2 - 2z \cos\frac{\pi}{2} + 1}$<br>$ii) x(n) = n u(n)$ . | CO5 | PO1 | <b>06</b> |

\*\*\*\*\*

B.M.S.C.E. - EVEN SEM 2023-24