

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

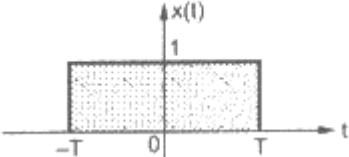
Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 19ES4CCSAS

Course: Signals and Systems

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Determine whether the following signals are periodic or not. If periodic find the fundamental period. i). $x(n)=\cos(0.125n\pi)$ ii). $x(n)=(\pi+0.2n)$.	CO1	PO1	06
		b)	Find and sketch the even and odd components of the signal shown $x(t)=u(t+1)$	CO1	PO1	06
		c)	Sketch and label for each of the signals for the given $x(t)$ shown: (i). $x(2t-4)$; (ii). $x(-2t+1)$	CO1	PO1	08
		OR				
	2	a)	Define signal? How signals are classified? Explain with examples.	CO1	PO1	06
		b)	List the basic operations that can be performed on a signal.	CO1	PO1	06
		c)	Analyse and Sketch and label for each of the signals for the given $x(t)$ shown: (i). $x(2t-4)$; (ii). $x(-2t+1)$	CO2	PO2	08
		Fig.2				
			UNIT - II			
3	a)	Explain the following system of properties with an example: i). Time Invariant and time variant systems	CO1	PO1	10	

		ii).Causal and non-causal systems			
	b)	Determine the total response for the system described by the difference equation, if input $x(n)=2^n \cdot u(n)$ $y(n) + 4y(n-1) + 4y(n-2) = x(n)$ & $y(-1) = 0, y(-2) = 1$	CO3	PO2	10
		OR			
4	a)	For each of the systems, state whether the system is linear, shift variant, stable and causal (i) $y(n)=n[x(n)]$ (ii) $y(n)=e^{x(n)}$	CO3	PO2	08
	b)	Determine whether the following systems are invertible or not, if it is construct the inverse system. (i) $y(t)=10 x(t)$ (ii) $y(t)=x^2(t)$	CO3	PO2	06
	c)	Implement the following LTI system in direct form-I and direct form-II block diagram representation. $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 5y(t) = 4x(t) + 6\frac{dx(t)}{dt}$	CO3	PO2	06
		UNIT - III			
5	a)	The impulse response of a system is given by $h(t)=u(t)-u(t-2)$ & an input $x(t)=u(t)-u(t-2)$. Analyse and develop the CT convolution integral of the signal.	CO3	PO2	10
	b)	Analyse and develop the DT convolution sum of the output signal response: $y(n); \text{ if } x(n) = \{1 \ 2 \ 3 \ 2\} \text{ & } h(n) = \{1 \ 2 \ 2\}$; and also verify results by tabular Convolution method..	CO3	PO2	10
		OR			
6	a)	Consider $x(n)=\{1,1,1,1,1\}$ and $h(n)=\{1,1,1,2,2,2\}$. Compute $y(n)=x(n)*h(n)\}$ using tabular Column method	CO3	PO2	06
	b)	Fine the total response of the system described by the equation $4y(n) + 4y(n+1) + y(n+2) = x(n)$ with an input $x(n) = 4^n u(n)$. Initial condition being $y(-1)=0, y(-2)=1$.	CO3	PO2	08
	c)	A difference equation of discrete time system is given below: $y(n)-0.2y(n-1)+0.6y(n-2)=x(n)+0.4x(n-1)$. Draw direct form-I and direct form-II structure.	CO1	PO1	06
		UNIT - IV			
7	a)	Obtain the frequency response and the impulse response of the system having the output $y(n)$ for the input $x(n)$ as given below $x(n) = 0.5^n \cdot u(n); y(n) = \frac{1}{4} (0.5)^n \cdot u(n) + (0.25)^n \cdot u(n)$	CO 3	PO2	10

	b)	State the following DTFT properties a) Convolution Property. b) Parseval's Theorem. c) Frequency Shifting property.	CO1	PO1	10
		OR			
8	a)	Find the FT of rectangular pulse shown below in Fig.4. and plot its magnitude and phase spectrum.	CO3	PO2	10
		<p>Fig.4</p>			
	b)	The input and the output of a causal LTI system are related by differential equation $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$. i) Find the impulse response of this system ii) What is the response of this system if $x(t) = te^{-2t}u(t)$	CO3	PO2	10
		UNIT - V			
9	a)	State the properties of ROC.	CO1	-	04
	b)	Solve the following difference equation using unilateral Z-transform. $y(n) - 1.5 y(n-1) + 0.5 y(n-2) = x(n)$ for $n \geq 0$ With initial conditions $y(-1) = 4$, $y(-2) = 10$ and $x(n) = (0.25)^n \cdot u(n)$	CO3	PO2	10
	c)	The input and output of an LTI system is given by $x(n) = u(n)$; $y(n) = (0.5)^{n-1} \cdot u(n+1)$ Find the Transfer Function.	CO2	PO1	06
		OR			
10	a)	Solve the following difference equation using unilateral Z-transform. $y(n) - \frac{3}{2} y(n-1) + \frac{1}{2} y(n-2) = x(n)$; for $n \geq 0$ With initial conditions $y(-1) = 4$; $y(-2) = 10$ and $x(n) = \left(\frac{1}{4}\right)^n u(n)$	CO3	PO2	10
	b)	Find the Z-transform of $x(n) = a^n u(n) + b^n u(-n-1)$	CO3	PO2	05
	c)	Find the inverse Z-transform of $X(z) = \frac{z^2 - 3z}{z^2 + \frac{3}{2}z - 1}$	CO3	PO2	05
