

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: ES Cluster

Course Code: 19ES4CCSAS

Course: Signals and Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Determine whether the following signals are periodic or not. If periodic find the fundamental period. i) $x[n] = e^{j\frac{2\pi}{3}n} + e^{j\frac{3\pi}{4}n}$ ii) $z[n] = \cos 2n$	CO1	PO1	07
	b)	Find and sketch the even and odd components of the signal shown in Fig.1 (b)	CO1	PO1	06
	c)	Sketch and label for each of the signals for the given $x(t)$ shown in Fig.1 (c) (i).$x(2t-4)$; (ii).$x(-2t+1)$	CO1	PO1	07
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.					
		OR			
2	a)	list the basic operations that can be performed on a signal.	CO1	PO2	06

	b)	<p>Sketch and label for each of the signals for the given $x(t)$ shown in Fig.2 (b)</p> <p>(i).$x(2t-4)$; (ii).$x(-2t+1)$</p> <p>Fig.2 (b)</p>	CO2	PO2	08
	c)	<p>Analyze and Evaluate the average Power or Energy of the following signals after determining whether they are Energy or Power signals.</p> $x(n) = \sin\left(\frac{1}{3}\pi n\right) * \cos\left(\frac{1}{3}\pi n\right)$	CO2	PO2	06
		UNIT - II			
3	a)	<p>A system is described by the differential equation given below:</p> $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) + \frac{dx(t)}{dt}$ <p>Evaluate the forced response of the system if input $x(t) = 5u(t)$</p>	CO1	PO2	08
	b)	<p>Explain the following system of properties with an example:</p> <p>i). linear and Non-linear Systems: ii). Time Variant and Time Invariant Systems:</p>	CO3	PO2	06
	c)	<p>Analyze and sketch the DT direct form-I and direct form-II of the signal:</p> $Y(n) + 0.5Y(n-1) - Y(n-3) = 3X(n-1) + 2X(n-2)$	CO3	PO3	06
		UNIT - III			
4	a)	<p>The impulse response of a system is given by $h(t) = u(t)$ & an input $x(t) = e^{-\alpha t}u(t)$. Analyze and develop the CT convolution integral of the signal.</p>	CO4	PO3	10
	b)	<p>Analyze and develop the DT convolution sum of the output signal response $y(n)$; if $x(n) = \{1 \ 2 \ 3 \ 2\}$ & $h(n) = \{1 \ 2 \ 2\}$; and also verify results by tabular Convolution method.</p>	CO4	PO3	10
		OR			
5	a)	<p>Analyze and develop the DT convolution sum of the output signal response $y(n)$; if $x(n) = \{1 \ 1 \ 0.5 \ 0.5\}$ & $h(n) = \{1 \ 1 \ 0.5 \ 0.25\}$; and also verify results by tabular Convolution method.</p>	CO3	PO2	10
	b)	<p>State & prove properties of Commutative property and Associate property of the convolution integral of the signal.</p>	CO4	PO3	10
		UNIT - IV			
6	a)	<p>Evaluate and analyze the DTFS representation for the signal $x(n)$: and plot the magnitude and phase spectrum of $x(n) = \cos(\frac{n\pi}{3})$.</p>	CO3	PO2	08

	b)	Evaluate and analyze the FT representation for the signal $x(t)$ and plot the magnitude and phase spectrum of $x(t) = e^{-at}u(t); a > 0$	CO3	PO2	05
	c)	Evaluate the Frequency response an impulse response of the system shown in Fig.6 (c). Analyze and evaluate the transfer function and also sketch magnitude and phase spectrum response.	CO3	PO2	07
		<p>Fig.6 (c). RC Network</p>			
		UNIT - V			
7	a)	List out the properties for the ROC (Region of convergence) of Z-Transform.	CO5	PO2	05
	b)	Apply the knowledge of properties of Z-Transform and Evaluate the Z-Transform: $x(n) = u(-n)$	CO5	PO1	05
	c)	Evaluate the impulse response and step response of the causal system given below and discuss on stability: $y(n) - y(n - 1) - 2y(n - 2) = x(n - 1) + 2x(n - 2)$.	CO5	PO1	10
