

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September / October 2024 Supplementary Examinations

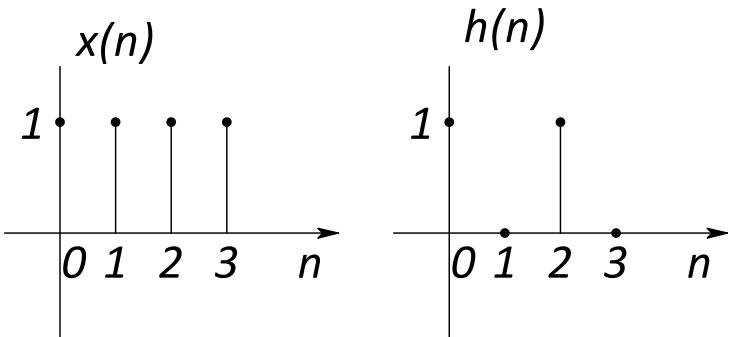
**Programme: B.E.**

**Branch: ES CLUSTER (EEE/ECE)**

**Course Code: 19ES5CCDSP**

**Course: Digital Signal Processing**

**Semester: V**


**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>   |    |                                                                                                                                                                                                     | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|
| 1                 | a) | Describe the process of frequency domain sampling and the reconstruction of discrete time signal.                                                                                                   | CO1       | PO1       | <b>06</b>    |
|                   | b) | State and prove: i) Linearity property ii) Periodicity and iii) Circular shift in time domain.                                                                                                      | CO2       | PO2       | <b>08</b>    |
|                   | c) | Given $x(n) = \{1, 2, 3, 4\}$ and $h(n) = \{1, -1, 1\}$ find circular Convolution $x(n) \otimes h(n)$ .                                                                                             | CO2       | PO2       | <b>06</b>    |
| <b>OR</b>         |    |                                                                                                                                                                                                     |           |           |              |
| 2                 | a) | Solve the given sequences for,<br>i) $x(n) = \{2, 3, 5, 8\}$ Linear shift $x(n-2) = ?$<br>ii) $x(n) = \{5, 2, 8, 9\}$ Circular shift $x(n-2)_4 = ?$                                                 | CO2       | PO2       | <b>04</b>    |
|                   | b) | State and prove the following properties of DFT.<br>i) Time reversal ii) Circular convolution iii) Frequency shifting.                                                                              | CO3       | PO3       | <b>08</b>    |
|                   | c) | Compute the 4-point DFT of the sequence $x(n) = \{0, 1, 2, 3\}$ and verify the result with IDFT method using formula method.                                                                        | CO2       | PO2       | <b>08</b>    |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                                     |           |           |              |
| 3                 | a) | What are the differences and similarities between DIT and DIF FFT algorithm?                                                                                                                        | CO1       | PO1       | <b>04</b>    |
|                   | b) | Draw and explain the basic butterfly diagram or signal flow graph of DIF-FFT radix-2.                                                                                                               | CO3       | PO3       | <b>06</b>    |
|                   | c) | Find 8-point $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$ using Radix-2 DIT FFT algorithm.                                                                                                                   | CO3       | PO3       | <b>10</b>    |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                     |           |           |              |
| 4                 | a) | In direct computation of N-point DFT, how many i) complex additions, ii) Complex multiplications iii) Trigonometric functions are required to calculate. Also mention importance of FFT algorithms. | CO3       | PO3       | <b>10</b>    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |    |                                                                                                                                                                                                                                                 |     |     |    |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   | b) | Verify the 4-point circular convolution of $x(n)$ and $h(n)$ given in Fig. 4 b) using Radix -2 DIF FFT algorithm.                                                                                                                               | CO4 | PO4 | 10 |
|   |    |  <p>Fig.4 b)</p>                                                                                                                                              |     |     |    |
|   |    | <b>OR</b>                                                                                                                                                                                                                                       |     |     |    |
| 5 | a) | Obtain the cascade form realization for the system given by<br>$H(z) = \frac{1 + \frac{1}{2} z^{-1}}{\left(1 - \frac{1}{5} z^{-1}\right)\left(1 - \frac{3}{4} z^{-1} + \frac{1}{8} z^{-2}\right)}$                                              | CO4 | PO3 | 08 |
|   | b) | Design a low pass Butterworth filter using Bilinear Transformation which satisfies the following constraints:<br>$0.8 \leq  H(e^{j\omega})  \leq 1 \quad 0 \leq \omega \leq 0.2 \pi$ $ H(e^{j\omega})  \leq 0.2 \quad 0.6 \leq \omega \leq \pi$ | CO4 | PO3 | 12 |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                |     |     |    |
| 6 | a) | What are the different types of windows based on Finite Impulse Response (FIR)? And list advantage of FIR filters.                                                                                                                              | CO4 | PO3 | 04 |
|   | b) | Calculate Hamming window coefficient for M=7.                                                                                                                                                                                                   | CO4 | PO3 | 06 |
|   | c) | Design a FIR, Low Pass Filter (LPF) using Rectangular window technique at a cut-off frequency <b>1rad/second</b> with an order <b>N=5</b> .                                                                                                     | CO4 | PO3 | 10 |
|   |    | <b>UNIT - V</b>                                                                                                                                                                                                                                 |     |     |    |
| 7 | a) | What are the limitations of linear filtering? How to overcome these limitations.                                                                                                                                                                | CO5 | PO2 | 06 |
|   | b) | Explain the working principle of Adaptive filters.                                                                                                                                                                                              | CO5 | PO1 | 06 |
|   | c) | With a neat block diagram explain two stage interpolator and decimator, representing multistage implementation of sampling rate conversion.                                                                                                     | CO5 | PO2 | 08 |

\*\*\*\*\*