

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Duration: 3 hrs.

Course Code: 22ES5PCDSP

Max Marks: 100

Course: Digital Signal processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I									
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Find the 8 point DFT of $x(n)=\{1,2,1,3,1,4,1,5\}$ using direct implementation . Plot the magnitude and phase spectrum	CO2	PO1	10			
		b)	(i) Given $x(n)= (1,2,3,4)$. Find the energy and hence verify Parseval's theorem. (ii) By means of circular convolution, determine the response of the FIR filter with impulse response $h(n)= \{4,1,3\}$ to the input sequence $x(n) =\{2,4,0,4\}$.	CO1	PO1	10			
	OR								
		2	a)	(i) Find the DFT of $x(n)= \{1,0,5,7\}$ using matrix method (ii) Find the linear convolution of $x1(n)=\{1,2,3,4\}$ and $x2(n)=\{5,6,7,8,9\}$ using Circular convolution method	CO2	PO1	10		
			b)	Find the IDFT of $X(k)=\{36, -4+j9.6, -4+j4, -4+j1.65, -4, -4-j1.65, -4-j4, -4-j9.6\}$.	CO2	PO1	10		
	UNIT - II								
	3	a)	Find the convolution of $x1(n)=\{1,3,5,7,9,8,7,6,5,4,3,2,1\}$ and $x2(n)=\{1,2\}$ using overlap add method.	CO2	PO1	10			
		b)	Find the DFT of $x(n)=\{1,2,3,4,4,3,2,1\}$ using DIT FFT algorithm	CO2	PO1	10			
OR									
	4	a)	Find the convolution of $x1(n)=\{1,3,5,7,9,8,7,6,5,4,3,2,1\}$ and $x2(n)=\{1,2\}$ using overlap save method.	CO2	PO1	10			
		b)	Find the DFT of $x(n)=\{1,2,1,4,4,1,2,1\}$ using DIF FFT algorithm	CO2	PO1	10			
UNIT - III									
	5	a)	Derive the expression for the order of Butterworth Filter	CO2	PO1	07			
		b)	Draw the direct form-I structure for the following difference equation $y(n)-0.5y(n-1)+0.2y(n-2)=x(n)+2x(n-1)+2.5x(n-2)$	CO2	PO1	05			

	c)	Derive the expression for Digital filter conversion from analog filter using impulse invariant method. Also discuss the steps involved in digital filter design.	CO2	PO1	08
		OR			
6	a)	List the expressions for Analog-to-Analog frequency transformations in filter design	CO2	PO1	06
	b)	Draw the direct form-II structure for the following difference equation $y(n)-0.5y(n-1)+0.2y(n-2)=x(n)+2x(n-1)+2.5x(n-2)$	CO2	PO1	06
	c)	Convert the analog bandpass filter with system function, $H(s) = \frac{1}{(s + 0.1)^2 + 9}$ using bilinear transformation. Also describe the steps involved in digital filter design	CO2	PO1	08
		UNIT - IV			
7	a)	Design a FIR low pass filter of length 7 with cut off frequency of $\frac{\pi}{2}$ rad/sec. Use hamming window.	CO2	PO1	10
	b)	Discuss the steps involved in designing the FIR filters using frequency sampling technique. Also draw the frequency sampling structure of FIR Filter.	CO2	PO1	10
		OR			
8	a)	List the features of FIR filter.	CO1	-	05
	b)	With a relevant example, illustrate the linear phase structure of FIR filter.	CO2	PO1	07
	c)	Design a FIR digital filter using a rectangular window with length N=5 $H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega}, & \omega < \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < \omega < \pi \end{cases}$	CO2	PO1	08
		UNIT - V			
9	a)	With relevant equations explain the working of LMS Algorithm.	CO2	PO1	10
	b)	With relevant equations and diagrams describe the process of sampling rate conversion by rational factor I/D.	CO2	PO1	10
		OR			
10	a)	What is an adaptive filter? Illustrate with neat block diagram. Describe the process of noise cancellation using adaptive filters.	CO2	PO1	10
	b)	With relevant equations and diagrams describe the process of (i) Decimation (ii) Interpolation	CO2	PO1	10
