

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 22IM3PCIME

Max Marks: 100

Course: Industrial Metrology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks																																			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define Standards. Explain wringing phenomenon of slip gauges with a help of diagram			CO1 PO1 06																																			
		b)	What are comparators? Which type of comparator is best suited for checking multiple dimensions and conditions on a part simultaneously in least possible time and also easily used for a line measurement of parts as they are being machined and take corrective actions. Explain your answer with a neat sketch. Also, Give its limitations			CO1 PO2 14																																			
OR																																									
	2	a)	It is required to set a dimension of 58.975mm with the help of slip gauge blocks. Two set available for the purpose are M45 (Grade 0) and M112 (Grade II). Permissible error in the mean length(μm) of gauges is given below:			CO3 PO3 08																																			
			<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td>Normal size</td><td>0.5</td><td>10</td><td>20</td><td>30</td><td>40</td><td>50</td><td>60</td><td>70</td><td>80</td><td>90</td><td>100</td></tr> <tr> <td>Grade (0)</td><td>0.1</td><td>0.12</td><td>0.14</td><td>0.16</td><td>0.18</td><td>0.20</td><td>0.22</td><td>0.24</td><td>0.26</td><td>0.28</td><td>0.30</td></tr> <tr> <td>Grade (II)</td><td>0.5</td><td>0.6</td><td>0.7</td><td>0.8</td><td>0.9</td><td>1.0</td><td>1.1</td><td>1.2</td><td>1.3</td><td>1.4</td><td>1.5</td></tr> </table>			Normal size	0.5	10	20	30	40	50	60	70	80	90	100	Grade (0)	0.1	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	Grade (II)	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
Normal size	0.5	10	20	30	40	50	60	70	80	90	100																														
Grade (0)	0.1	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30																														
Grade (II)	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5																														
		Determine the set you will prefer and the range of the set dimensions.																																							
		b)	There are two systems by which a fit can be accomplished. Explain with a neat schematic representation.			CO2 PO2 06																																			
		c)	Explain the Taylor's principle in the design of GO and NOGO limit gauges and briefly explain the gauge tolerance.			CO1 PO1 06																																			
UNIT - II																																									
	3	a)	What is the best wire? Derive the expression for the same in terms of the pitch and angle of the thread.			CO2 PO2 08																																			
		b)	Explain the constant chord method of checking the gear tooth thickness and find the expression for the value of constant chord and its depth from the tip of the tooth.			CO2 PO2 08																																			

	c)	With a sketch define the following terms with respect to a screw thread. i)Major diameter ii)Pitch iii) Effective diameter iv) Angle of thread	CO1	PO1	04
		UNIT - III			
4	a)	Differentiate between primary and secondary texture with an example	CO1	PO1	08
	b)	How Tomlinson surface meter is used for measuring surface roughness? Explain with neat sketch.	CO1	PO1	12
		UNIT - IV			
5	a)	Define the following with respect to an instrument: i)Sensitivity ii)Response time iii)Threshold iv) Hysteresis v) Reproducibility	CO2	PO2	10
	b)	Explain with block diagram generalized measurement system with example for each stage elements.	CO2	PO2	10
		OR			
6	a)	What is transducer? List the advantages of electrical transducers over mechanical transducers.	CO2	PO2	06
	b)	Explain with the help of a neat sketch the principle of working and construction of LVDT. Also draw and explain briefly the characteristic curve.	CO4	PO9 PO12	14
		UNIT - V			
7	a)	Mention and explain the Applications of laser interferometer	CO3	PO3	08
	b)	Explain the main features of CMM and mention the main structures of CMM. Also mention its advantages.	CO4	PO9 PO12	12
