

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

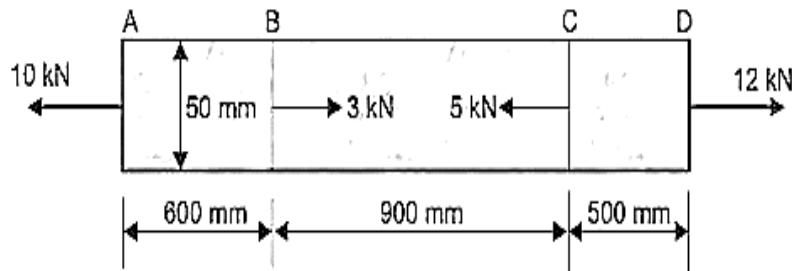
Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 22IM3PCMAM

Max Marks: 100

Course: Materials and Mechanics


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

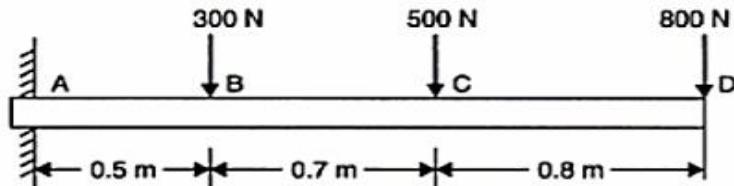
			UNIT - I		
			CO	PO	Marks
1	a)	Define Solid solution. With neat sketches explain different types of solid solutions.	CO5	PO3	06
	b)	With neat diagrams explain cooling curves for i) Pure metal ii) Eutectic alloy	CO5	PO3	06
	c)	Draw Iron- Carbon phase diagram and label all the temperature and composition fields.	CO5	PO3	08
OR					
2	a)	Illustrate & explain about the schematic TTT diagram for eutectoid plain carbon steel.	CO5	PO3	10
	b)	Discuss Gibb's phase rule and Lever rule.	CO5	PO3	10
UNIT - II					
3	a)	Compare between normalizing and annealing process.	CO5	PO3	06
	b)	Discuss about the purpose of heat treatment & explain the temperature region on the Iron-carbon phase diagram.	CO5	PO3	14
OR					
4	a)	Discuss about Nanotechnology Applications in Nano Industries advantages & disadvantages.	CO 5	PO3	08
	b)	Give the classification of composite material based on reinforcing & matrix material.	CO 5	PO3	06
	c)	Discuss about the materials & applications of MMC.	CO 5	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

5 a) Figure shows the bar AB of uniform cross-sectional area is acted upon by several forces. Find the deformation of the bar, assuming $E = 2 \times 10^5 \text{ N/mm}^2$.

b) The following observations were made during a tensile test on a mild steel specimen of 40 mm diameter and 200 mm long: Elongation with 40,000 N load (within the limit of proportionality) = 0.0304 mm, Yield load = 165,000 N, Maximum load = 245,000 N, Length of the specimen at fracture = 252 mm, Determine the yield stress, the modulus of elasticity, the ultimate stress and the percentage elongation.


OR

6 a) Show the relationship between Modulus of rigidity, Bulk modulus & Young's modulus.

b) Obtain an expression for change in length of a uniformly tapered circular cross section.

UNIT - IV

7 a) A cantilever beam of length 2 m carries the point loads as shown in Fig. Draw the shear force and B.M. diagrams for the cantilever beam.

b) What is a beam? Explain the different types of beams with figures.

OR

CO 2

PO1

10

CO 2

PO1

10

CO3

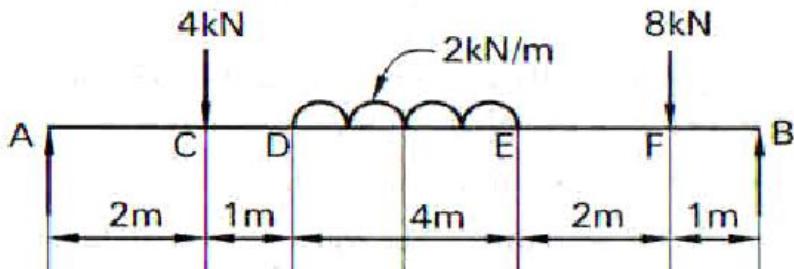
PO2

10

CO1

10

CO4


PO3

10

CO3

PO2

10

8	a)	Draw the shear force and bending moment diagram for the simply supported beam shown in the figure below.	CO4	PO3	10
	UNIT - V				
9	a)	A beam of an "I" section 200 mm x 300 mm has web thickness 10 mm & flange thickness 10 mm. It carries a shearing force of 10 kN at a section. Sketch the shear stress distribution across the section.	CO4	PO3	10
	b)	Derive the bending equation.	CO3	PO1	10
	OR				
10	a)	A cantilever of square section 200 mm x 200 mm, 2-meter-long just fails in flexure when a load of 12 kN is placed at its force end. A beam of same material and having a rectangular cross-section 150 mm wide and 300 mm deep is simply supported over a span of 3m. Calculate the minimum central concentrated load required to break the beam.	CO4	PO3	10
	b)	A rolled I section of size 50 mm x 75 mm is used as a beam, with an effective span of 3 meters. The flanges are 5 mm thick and web is 3.75 mm thick. Calculate the uniformly distributed load the beam can carry if the maximum intensity of shear stress induced is limited to 40 MPa.	CO4	PO3	10
