

B.M.S. College of Engineering, Bengaluru-560019

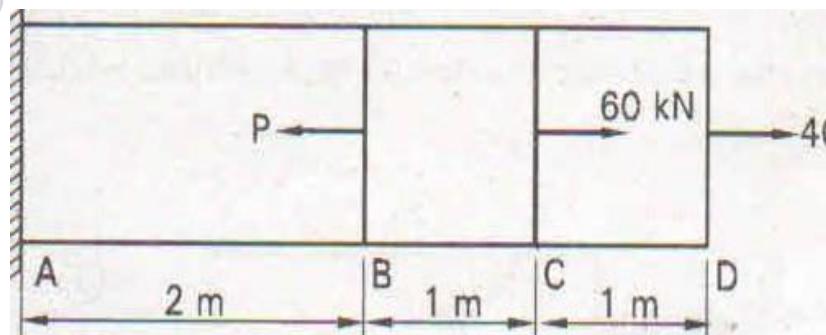
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Industrial Engineering and Management

Course Code: 19IM3DCMOM


Course: Mechanics of Materials

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define stress and strain. Write the stress strain curve for mild steel specimen under tensile load and explain all the salient features	<i>CO2</i>	<i>PO1</i>	10
		b)	<p>The following data pertains to a tension test conducted in laboratory</p> <p>Diameter of specimen = 25mm</p> <p>Gauge length of specimen = 200mm</p> <p>Extension under load of 20kN = 0.04mm</p> <p>Load at yield point = 150kN</p> <p>Maximum load = 225kN</p> <p>Breaking load or load at failure = 120kN</p> <p>Length of specimen after failure = 275mm</p> <p>Neck diameter = 18.25mm</p> <p>Determine i) Young's modulus ii) Yield stress iii) Ultimate stress iv) Breaking Stress v) True breaking stress vi) Percentage elongation vii) Percentage reduction in area viii) Safe stress adopting a factor of safety of 2.5</p>	<i>CO2</i>	<i>PO1</i>	10
OR						
2	a)	Determine the magnitude of the load P necessary to produce zero net change in the length of the straight bar shown in fig. below. Take $A=400\text{mm}^2$	<i>CO3</i>	<i>PO2</i>	10	

	b)	<p>A reinforced short concrete column 250mmX 250 mm in section is reinforced with 8 steel bars. The total area of the steel bars is 1608.5mm². The column carries a load of 270kN. If the modular ratio is 18, find the stress in concrete and steel. If the stress in concrete shall not exceed 4N/mm², find the area of steel required so that the column may support a load of 400kN.</p>	CO1	-	10
		UNIT-II			
3	a)	Explain the sign conventions For Shear Force, Bending Moment diagrams.	CO4	PO3	10
	b)	A simply supported beam of 6m long is subjected to a load of 2kN, 5kN and 4kN at a distance 1.5m, 3m and 4.5m from the left support. Draw the SFD and BMD	CO3	PO2	10
		UNIT - III			
4	a)	With assumptions in pure bending derive a relationship between bending stress and radius of curvature.	CO4	PO3	10
	b)	A beam of symmetrical section and 200mm deep is simply supported over a span of 4 meters. Find i) Udl it may carry if the maximum bending stress not to exceed 100N/mm ² . ii) Maximum bending stress if the beam carries a central load of 40kN. Take $I=10 \times 10^6 \text{ mm}^4$.	CO3	PO1	10
		UNIT - IV			
5	a)	Define Solid Solution. Discuss the conditions which favor the formation of solid solution	CO5	PO3	08

	b)	<p>Construct a phase diagram to the scale on a graph sheet for the following data:</p> <p>Melting point of Ag: 961°C Melting point of Cu: 1083°C Eutectic temperature: 780°C Eutectic Composition: 28%Cu Maximum solubility of Cu in Ag: 9% at 780°C Maximum solubility of Ag in Cu: 8% at 780°C Maximum solubility of Cu in Ag: 2% at 400°C Maximum solubility of Ag in Cu: 0% at 400°C</p> <p>Label all the fields. Determine the following from the phase diagram</p> <ol style="list-style-type: none"> Temperature at which solidification starts and ends for 20%Cu. Amount of eutectic in a 20%Cu-80%Ag alloy at 700°C. Percentage and composition of the liquid and solid phases in a 20%Ag-80%Cu alloy at 900°C <p>Draw the cooling path of the alloy undergoing invariant reaction</p>	<i>CO5</i>	<i>PO3</i>	12
		OR			
6	a)	Draw Iron-Iron Carbon Equilibrium diagram and label all phase fields. Explain any three invariant reactions in the diagram. Draw the microstructure of 3%carbon steel at different regions.	<i>CO5</i>	<i>PO3</i>	12
	b)	Explain Tempering and Carburizing processes with diagrams	<i>CO5</i>	<i>PO3</i>	08
		UNIT - V			
7	a)	Define Composite materials. Discuss advantages and disadvantages.	<i>CO5</i>	<i>PO3</i>	08
	b)	Explain Particulate and Flake composites.	<i>CO5</i>	<i>PO3</i>	06
	c)	Explain the bottom up and Top down process of manufacturing Nano materials	<i>CO5</i>	<i>PO3</i>	06
