

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

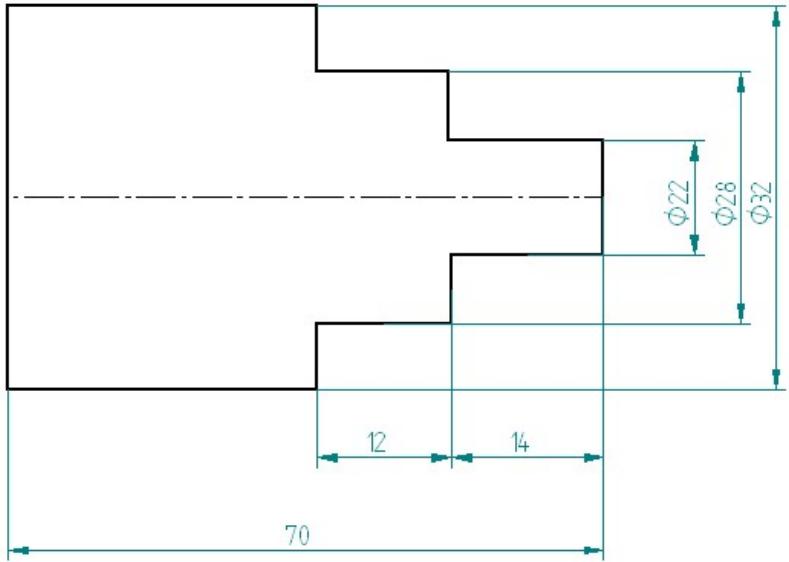
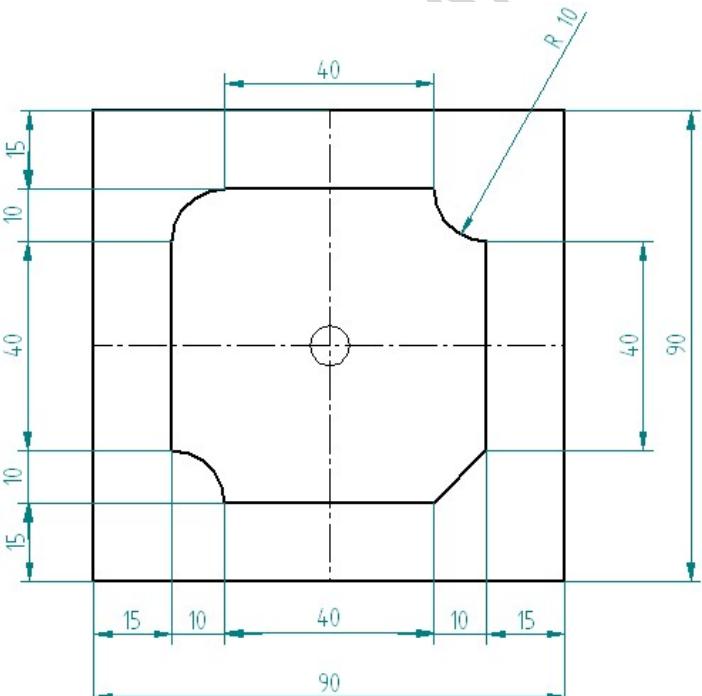
Programme: B.E.

Branch: Industrial Engineering and Management

Course Code: 22IM4PCCIM

Course: Computers in Manufacturing

Semester: IV



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
1	a)	Explain the steps involved in the conventional product cycle with a suitable example.			<i>CO1</i>	<i>PO1</i>	12
	b)	Differentiate between solid and wireframe modeling.			<i>CO1</i>	<i>PO1</i>	08
			UNIT - II				
2	a)	With the help of a block diagram, explain the basic components of an NC system.			<i>CO1</i>	<i>PO1</i>	10
	b)	With suitable examples, explain the three types of nc motion control systems			<i>CO1</i>	<i>PO1</i>	10
			UNIT - III				
3	a)	Explain the two types of adaptive control systems.			<i>CO1</i>	<i>PO1</i>	10
	b)	State the benefits of adaptive control in machine tools.			<i>CO1</i>	<i>PO1</i>	10
			UNIT - IV				
4	a)	List and explain different types of statements used in the APT language.			<i>CO1</i> <i>CO2</i>	<i>PO1</i> <i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Generate program using G and M codes for turning operation for the profile given below. Cutting tool: RH turning tool.	CO1 CO2	PO2 PO3 PO12	12
		OR			
5	a)	With example, explain canned cycles.	CO1	PO2	08
	b)	Generate milling program using G and M codes for the profile given below. Cutting tool: Slot Drill Cutter (ϕ 6mm), Depth of cut: 1mm	CO1 CO2	PO2 PO3 PO12	12
		UNIT - V			
6	a)	List and Explain with sketches the Classification of robots based on robots configuration.	CO1	PO1	12
	b)	With the block diagram, explain open and closed loop control systems.	CO1	PO1	08

OR						
	7	a)	Explain any five types of End Effectors.	<i>CO1</i>	<i>PO1</i>	10
		b)	Explain the 5 components of any Industrial robot	<i>CO1</i>	<i>PO1</i>	10

B.M.S.C.E. - EVEN SEM 2022-23