

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 23IM4BSSFE

Max Marks: 100

Course: Statistics for Engineers

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I										CO	PO	Marks																				
1	a)	Explain in brief the steps involved in engineering methods of problem solving with an example.	CO 1	PO1	06																														
	b)	<p>The ages of a sample of the students attending college this semester are:</p> <table border="1" data-bbox="309 887 1167 999"> <tr><td>19</td><td>17</td><td>15</td><td>20</td><td>23</td><td>41</td><td>33</td><td>21</td><td>18</td><td>20</td></tr> <tr><td>18</td><td>33</td><td>32</td><td>29</td><td>24</td><td>19</td><td>18</td><td>20</td><td>17</td><td>22</td></tr> <tr><td>55</td><td>19</td><td>22</td><td>25</td><td>28</td><td>30</td><td>44</td><td>19</td><td>20</td><td>39</td></tr> </table> <p>i. Construct a frequency distribution with intervals 15-19, 20-24, 25-29, 30-34, and 35 and older. ii. Estimate the modal value iii. Now compute the mean for raw data.</p>	19	17	15	20	23	41	33	21	18	20	18	33	32	29	24	19	18	20	17	22	55	19	22	25	28	30	44	19	20	39	CO 2	PO1	08
19	17	15	20	23	41	33	21	18	20																										
18	33	32	29	24	19	18	20	17	22																										
55	19	22	25	28	30	44	19	20	39																										
	c)	<p>Suppose we want to analyse the data of defects on four types of defects complained by the customers, following are the data received information.</p> <p>i. Construct the Pareto Chart for the defects complained ii. Mention the vital few factors and useful many factors affecting the problem</p> <table border="1" data-bbox="492 1426 984 1706"> <thead> <tr><th>Types of Defects</th><th>Frequency</th></tr> </thead> <tbody> <tr><td>Button defect</td><td>23</td></tr> <tr><td>Pocket defect</td><td>16</td></tr> <tr><td>Collar defect</td><td>10</td></tr> <tr><td>Cuff defect</td><td>7</td></tr> <tr><td>Sleeve defect</td><td>3</td></tr> <tr><td>Total</td><td>59</td></tr> </tbody> </table>	Types of Defects	Frequency	Button defect	23	Pocket defect	16	Collar defect	10	Cuff defect	7	Sleeve defect	3	Total	59	CO 2	PO1	06																
Types of Defects	Frequency																																		
Button defect	23																																		
Pocket defect	16																																		
Collar defect	10																																		
Cuff defect	7																																		
Sleeve defect	3																																		
Total	59																																		
			UNIT – II																																
2	a)	The following table shows the typical depth (rounded to the nearest foot) for nonfailed wells in geological formations in Baltimore County (The Journal of Data Science, 2009, Vol.7, pp. 111–127).	CO 2 CO 3	PO1 PO2	06																														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <thead> <tr> <th>Geological Formation Group</th><th>Number of Nonfailed Wells</th><th>Nonfailed Well Depth</th></tr> </thead> <tbody> <tr> <td>Gneiss</td><td>1,515</td><td>255</td></tr> <tr> <td>Granite</td><td>26</td><td>218</td></tr> <tr> <td>Loch Raven Schist</td><td>3,290</td><td>317</td></tr> <tr> <td>Mafic</td><td>349</td><td>231</td></tr> <tr> <td>Marble</td><td>280</td><td>267</td></tr> <tr> <td>Prettyboy Schist</td><td>1,343</td><td>255</td></tr> <tr> <td>Other schists</td><td>887</td><td>267</td></tr> <tr> <td>Serpentine</td><td>36</td><td>217</td></tr> <tr> <td>Total</td><td>7,726</td><td>2,027</td></tr> </tbody> </table> <p>(i) Calculate the probability mass function of depth for nonfailed wells from the table. (ii) Determine the cumulative distribution function for the random variable (iii) Calculate the mean and variance for the random variable</p>	Geological Formation Group	Number of Nonfailed Wells	Nonfailed Well Depth	Gneiss	1,515	255	Granite	26	218	Loch Raven Schist	3,290	317	Mafic	349	231	Marble	280	267	Prettyboy Schist	1,343	255	Other schists	887	267	Serpentine	36	217	Total	7,726	2,027		
Geological Formation Group	Number of Nonfailed Wells	Nonfailed Well Depth																																
Gneiss	1,515	255																																
Granite	26	218																																
Loch Raven Schist	3,290	317																																
Mafic	349	231																																
Marble	280	267																																
Prettyboy Schist	1,343	255																																
Other schists	887	267																																
Serpentine	36	217																																
Total	7,726	2,027																																
	b)	<p>The number of flaws in bolts of cloth in textile manufacturing is assumed to be Poisson distributed with a mean of 0.1 flaw per square meter.</p> <p>(i) What is the probability that there are two flaws in one square meter of cloth? (ii) What is the probability that there is one flaw in 10 square meters of cloth? (iii) What is the probability that there are no flaws in 20 square meters of cloth? (iv) What is the probability that there are at least two flaws in 10 square meters of cloth?</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	08																													
	c)	<p>Problem illustrates that poor quality can affect schedules and costs. A manufacturing process has 100 customer orders to fill. Each order requires one component part that is purchased from a supplier. However, typically, 2% of the components are identified as defective, and the components can be assumed to be independent.</p> <p>(i) If the manufacturer stocks 100 components, what is the probability that the 100 orders can be filled without reordering components? (ii) If the manufacturer stocks 102 components, what is the probability that the 100 orders can be filled without reordering components? (iii) If the manufacturer stocks 105 components, what is the probability that the 100 orders can be filled without reordering components?</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	06																													
		OR																																
3	a)	<p>The probability density function of the length of a metal rod is $f(x) = 2$ for $2.3 < x < 2.8$ meters.</p> <p>(i) If the specifications for this process are from 2.25 to 2.75 meters, what proportion of rods fail to meet the specifications?</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	06																													

		(ii) Assume that the probability density function is $f(x) = 2$ for an interval of length 0.5 meters. Over what value should the density be centered to achieve the greatest proportion of rods within specifications? (iii) Determine the cumulative distribution function for the distribution. Use the cumulative distribution function to determine the probability that a length exceeds 2.7 meters.			
	b)	The life of a semiconductor laser at a constant power is normally distributed with a mean of 7000 hours and a standard deviation of 600 hours. (i) What is the probability that a laser fails before 5000 hours? (ii) What is the life in hours that 95% of the lasers exceed? (iii) If three lasers are used in a product and they are assumed to fail independently, what is the probability that all three are still operating after 7000 hours?	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	06
	c)	The number of (large) inclusions in cast iron follows a Poisson distribution with a mean of 2.5 per cubic millimeter. Approximate the following probabilities: (i) Determine the mean and standard deviation of the number of inclusions in a cubic centimeter (cc). (ii) Approximate the probability that fewer than 2600 inclusions occur in a cc. (iii) Approximate the probability that more than 2400 inclusions occur in a cc. (iv) Determine the mean number of inclusions per cubic millimeter such that the probability is approximately 0.9 that 500 or fewer inclusions occur in a cc.	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	08
UNIT - III					
4	a)	Distinguish between point estimate and interval estimate with an example.	<i>CO 1</i>	<i>PO1</i>	06
	b)	Of 1000 randomly selected cases of lung cancer, 823 resulted in death within 10 years. (i) Calculate a 95% two-sided confidence interval on the death rate from lung cancer. (ii) Using the point estimate of p obtained from the preliminary sample, what sample size is needed to be 95% confident that the error in estimating the true value of p is less than 0.03? (iii) How large must the sample be if you wish to be at least 95% confident that the error in estimating p is less than 0.03, regardless of the true value of p ?	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	06
	c)	An article in the Australian Journal of Agricultural Research [“Non-Starch Polysaccharides and Broiler Performance on Diets Containing Soyabean Meal as the Sole Protein Concentrate” (1993, Vol. 44(8), pp. 1483–1499)] determined that the essential amino acid (Lysine) composition level of soybean meals is as shown here (g/kg):	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	08

		<table border="1"> <tr><td>22.2</td><td>24.7</td><td>20.9</td><td>26.0</td><td>27.0</td></tr> <tr><td>24.8</td><td>26.5</td><td>23.8</td><td>25.6</td><td>23.9</td></tr> </table> <p>(i) Construct a 99% two-sided confidence interval for σ^2. (ii) Calculate a 99% lower confidence bound for σ^2. (iii) Calculate a 90% lower confidence bound for σ. (iv) Compare the intervals that you have computed.</p>	22.2	24.7	20.9	26.0	27.0	24.8	26.5	23.8	25.6	23.9											
22.2	24.7	20.9	26.0	27.0																			
24.8	26.5	23.8	25.6	23.9																			
		UNIT – IV																					
5	a)	<p>Cloud seeding has been studied for many decades as a weather modification procedure (for an interesting study of this subject, see the article in Technometrics, “A Bayesian Analysis of a Multiplicative Treatment Effect in Weather Modification,” Vol. 17, pp. 161–166). The rainfall in acre-feet from 20 clouds that were selected at random and seeded with silver nitrate follows: 18.0, 30.7, 19.8, 27.1, 22.3, 18.8, 31.8, 23.4, 21.2, 27.9, 31.9, 27.1, 25.0, 24.7, 26.9, 21.8, 29.2, 34.8, 26.7, and 31.6.</p> <p>(i) Can you support a claim that mean rainfall from seeded clouds exceeds 25 acre-feet? Use $\alpha = 0.01$. Find the P-value</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	08																		
	b)	<p>Let X denote the number of flaws observed on a large coil of galvanized steel. Of 75 coils inspected, the following data were observed for the values of X:</p> <table border="1"> <tr><td>Values Observed</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td></tr> <tr><td>Frequency</td><td>1</td><td>11</td><td>8</td><td>13</td><td>11</td><td>12</td><td>10</td><td>9</td></tr> </table> <p>(i) Does the assumption of the Poisson distribution seem appropriate as a probability model for these data? Use $\alpha = 0.01$. (ii) Calculate the P-value for this test.</p>	Values Observed	1	2	3	4	5	6	7	8	Frequency	1	11	8	13	11	12	10	9	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	12
Values Observed	1	2	3	4	5	6	7	8															
Frequency	1	11	8	13	11	12	10	9															
		OR																					
6	a)	<p>Consider the hypothesis test $H_0 : \mu_1 = \mu_2$ against $H_1: \mu_1 \neq \mu_2$ with known variances $\sigma_1 = 10$ and $\sigma_2 = 5$. Suppose that sample sizes $n_1 = 10$ and $n_2 = 15$ and that $\bar{x}_1 = 4.7$ and $\bar{x}_2 = 7.8$. Use $\alpha = 0.05$.</p> <p>(i) Test the hypothesis and find the P-value. (ii) Explain how the test could be conducted with a confidence interval.</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	10																		
	b)	<p>In the 2004 presidential election, exit polls from the critical state of Ohio provided the following results: For respondents with college degrees, 53% voted for Bush and 46% voted for Kerry. There were 2020 respondents.</p> <p>(i) Is there a significant difference in these proportions? Use $\alpha = 0.05$. What is the P-value? (ii) Calculate a 95% confidence interval for the difference in the two proportions and comment on the use of this interval to answer the question in part (i).</p>	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	10																		

UNIT – V

7	a)	<p>A study was made to model the relation between weekly advertising expenditures and sales. During the study following data were recorded:</p> <table border="1" style="margin-left: 20px;"> <tr> <td>Advertising cost (Rs)</td> <td>20</td> <td>25</td> <td>30</td> <td>35</td> <td>40</td> <td>45</td> <td>50</td> <td>55</td> <td>60</td> </tr> <tr> <td>Weekly sales</td> <td>400</td> <td>420</td> <td>405</td> <td>480</td> <td>475</td> <td>490</td> <td>525</td> <td>560</td> <td>515</td> </tr> </table> <p> i. Plot a scatter diagram ii. Find the equation of the regression line to predict weekly sales from advertising expenditures. iii. Compute Coefficient of determination R^2 and interpret about model. iv. Test the hypothesis for Slope using $\alpha = 0.05$ </p>	Advertising cost (Rs)	20	25	30	35	40	45	50	55	60	Weekly sales	400	420	405	480	475	490	525	560	515	<i>CO 2</i> <i>CO 3</i>	<i>PO1</i> <i>PO2</i>	16
Advertising cost (Rs)	20	25	30	35	40	45	50	55	60																
Weekly sales	400	420	405	480	475	490	525	560	515																
	b)	Discuss briefly the multi linear regression. With its applications.	<i>CO 1</i>	<i>PO1</i>	04																				
