

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 22IM6PCADM

Max Marks: 100

Course: Advanced Decision Modelling

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of statistical tables permitted.

UNIT - I			CO	PO	Marks
1	a)	<p>Solve the following LPP by Two phase Simplex Method $\text{Maximize } Z = -4X_1 - 3X_2 - 9X_3$ subject to $2X_1 + 4X_2 + 6X_3 \geq 15$ $6X_1 + X_2 + 6X_3 \geq 12$ $X_1, X_2, X_3 \geq 0$</p>	CO2	PO2	10
	b)	<p>Solve the following problem using Branch and bound method of integer Programming. $\text{MaxZ}=3X_1+4X_2$ Subject to $3X_1-X_2 \leq 12$ $3X_1+11X_2 \leq 0$ $X_1, X_2 \geq 0$ and are integers</p>	CO2	PO2	10
OR					
2	a)	<p>$\text{Maximize } z = -5x_1 + 5x_2 + 13x_3$ using Sensitivity Analysis Subject to: $-x_1 + x_2 + 3x_3 \leq 20$ $12x_1 + 4x_2 + 10x_3 \leq 90$ $x_1, x_2, x_3 \geq 0$.</p> <p>i) Solve the above LPP ii) If b_i is changed to (40 and 18), what is the new solution ? iii) If C_j is changed to (10, 10, 13). Does the optimal solution change?</p>	CO4	PO3	10
	b)	<p>Find solution using integer simplex method (Gomory's cutting plane method) $\text{MAX } Z = x_1 + x_2$ subject to $3x_1 + 2x_2 \leq 5$ $x_2 \leq 2$ and x_1, x_2 non-negative integers</p>	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II																					
3	a)	What are the characteristics of queuing system Discuss M/G/1 and M/D/1 queuing models. Show under what conditions M/G/1 can be reduced to M/D/1 queuing model.	CO1	PO1	08																
	b)	A commercial bank has 3 cash paying assistants. Customers are found to arrive in a poison fashion at an average rate of 6/hr for transaction. The service time is found to have exponential distribution with a mean of 18mins. The customers are processed on FCFS basis. Determine i) Average no of customers in the bank ii) Waiting time of customers in the bank iii) Average no of customers in the Queue iv) Waiting time of customers in the Queue.	CO4	PO3	12																
UNIT - III																					
4	a)	Define Simulation. Explain the steps involved in simulation.		CO1	PO1																
	b)	Differentiate between Continuous and discrete systems.		CO1	PO1																
	c)	What is system and System environment? List the component of the system with examples		CO1	PO1																
OR																					
5	a)	Define Random number. Explain statistical properties of random numbers.		CO1	PO1																
	b)	Generate 4 three-digit random numbers using multiplicative congruential method with $X_0=117$, $a=43$ and $m=1000$.		CO2	PO2																
	c)	The sequence of numbers 0.54, 0.73, 0.98, 0.11, 0.68 has been generated. Use the Kolmogrove-Smirnov test with $\alpha=0.05$ to determine if the hypothesis that the numbers are uniformly distributed on the internal [0,1] can be rejected.		CO2	PO2																
UNIT - IV																					
6	a)	Explain Inverse Transform technique of producing random variates for exponential distribution. Generate exponential variates X_i with mean 1. Given random numbers $R_i=0.1306, 0.0422, 0.6597, 0.7965, 0.7696$.		CO2	PO2																
	b)	What is the need for input modeling? Explain the steps involved in the development of a useful model for given set of data		CO1	PO1																
	c)	Records pertaining monthly number of the job-related injuries at an underground coal mine were being studied by a federal agency. The values for the past 100 months were as follows		CO4	PO3																
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Injuries per month</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> </tr> <tr> <td>Frequency of Occurrence</td> <td>35</td> <td>40</td> <td>13</td> <td>6</td> <td>4</td> <td>1</td> <td>1</td> </tr> </table> <p>Apply the chi-square test to these data to test the hypothesis, that, underlying distribution is Poisson. Use a level of significance of $\alpha=0.05$.</p>		Injuries per month	0	1	2	3	4	5	6	Frequency of Occurrence	35	40	13	6	4	1	1		06
Injuries per month	0	1	2	3	4	5	6														
Frequency of Occurrence	35	40	13	6	4	1	1														
UNIT - V																					
7	a)	Give the Classification of MCDM with Applications		CO4	PO2																
	b)	Explain the reasons for choosing MCDM And Soft computing in Decision Making		CO4	PO2																
	c)	Enumerate the procedure involved in analytical Hierarchy process with an example		CO4	PO2																
