

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

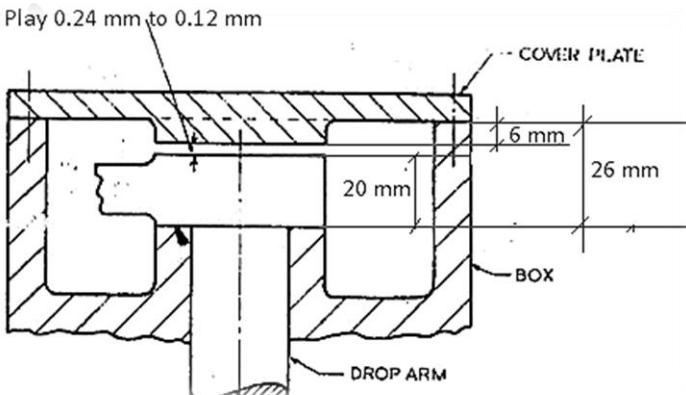
Programme: B.E.

Branch: Industrial Engineering and Management

Course Code: 20IM6DEDFA

Course: Design for Manufacturability

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are the reasons for non-implementation of DFM / DFA?	CO1	-	10
		b)	With the help of a Block diagram, elucidate the typical steps in a DFMA Study using software.	CO2	PO1	10
			UNIT - II			
B.M.S. COLLEGE OF ENGINEERING BENGALURU-560019 SEMESTER END EXAMINATIONS JULY 2023	2	a)	What are the types of drawings required for any engineering component? Explain. Also differentiate between i) Functional and Non-Functional Dimensions ii) Tolerance and Limits	CO1	-	10
		b)	An Automobile Steering Box is shown below, where the drop arm is to have a vertical movement of (0.24 mm to 0.12 mm). In the interest of achieving easier machining tolerances, show the two conditions of assembly, with neat diagrams. Include all the relevant component conditions.	CO3	PO2	10
			UNIT - III			
3	a)	Explain Simplification by amalgamation.		CO2	PO1	08

	b)	<p>For the component shown in Fig. below (Machine Support Shaft), suggest a design modification to achieve ease of machining. Also, clearly explain the machining procedure for the modified design.</p>	CO4	PO3	12
		OR			
4	a)	List and explain the design rules for sand casting.	CO1	-	10
	b)	<p>For the forked steel lever casting, shown below, indicate the parting line and necessary sand cores. Suggest a design modification that will reduce / eliminate the sand core requirements, while maintaining, as far as possible, the weight of the casting.</p>	CO4	PO3	10
		UNIT - IV			
5	a)	Explain how you estimate the moulding cycle time in Injection Moulding.	CO2	PO1	10
	b)	<p>A batch of 15cm diameter disks, with a thickness of 4mm is to be moulded from ABS Plastic. The recommended percentage increase in area due to runner system is 15 % and injection pressure is 1000 bar, with maximum cavity pressure 500 bar. Determine maximum separating force and shot size.</p>	CO3	PO2	10
		OR			

	6	a)	Explain with a neat diagram the working of a hot chamber injection moulding machine.	CO3	PO2	10
		b)	Explain how you would select an appropriate press.	CO1	PO	10
			UNIT - V			
	7		Draw the following GD&T Symbols and explain how they are measured with aid of neat sketches: i) Flatness ii) Cylindricity iii) Run-out iv) Straightness v) Circularity	CO2	PO1	20

B.M.S.C.E. - EVEN SEM 2022-23