

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 20IM6DCLOM

Max Marks: 100

Course: Lean and Operations Management

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks															
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.			1 a) Identify and explain the characteristics that differentiates between Manufacturing operation and service operations			CO2	PO11	10														
			b) Enumerate and describe the principal factors that influences productivity rate with relevant examples			CO1	-	10														
UNIT - II																						
2 a) Historical demand for a product is:			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Month</th><th>Demand</th></tr> </thead> <tbody> <tr><td>January</td><td>12</td></tr> <tr><td>February</td><td>11</td></tr> <tr><td>March</td><td>15</td></tr> <tr><td>April</td><td>12</td></tr> <tr><td>May</td><td>16</td></tr> <tr><td>June</td><td>15</td></tr> </tbody> </table> <p>i. Using a weighted moving average with weights of 0.60, 0.30 and 0.10, find the July forecast. ii. Using single exponential smoothing with $\alpha = 0.2$ and June forecast = 13, find the July forecast. Make suitable assumptions.</p>			Month	Demand	January	12	February	11	March	15	April	12	May	16	June	15	CO2	PO1	08
Month	Demand																					
January	12																					
February	11																					
March	15																					
April	12																					
May	16																					
June	15																					
b) State the conditions under which Delphi method is used and at least three disadvantages resulting from its use.						CO3	PO2	06														
Examine the issues that must be addressed in developing an acceptable aggregate plan using a level strategy with			<p>i. Constant workforce level ii. Constant output rate</p>			CO4	PO3	06														

OR																													
3	a)	Explain the key inputs of an MRP system with the block diagram	CO4	PO3	06																								
	b)	Enumerate the key functions of Master Production Schedule.	CO4	PO3	04																								
	c)	A lathe manufacturer had noted the sales invoices from January to August and noticed the sales during each month as 10, 11, 10, 11, 14, 15, 14 and 15 units respectively. What would be his estimate of sales for September? a. If he has followed 4 month weighted moving average (with weights 0.4, 0.3, 0.2 and 0.1) If he has followed simple exponential smoothing with $\alpha = 0.2$ and his estimated sales for January is 11.	CO3	PO2	10																								
UNIT - III																													
4	a)	<p>The following data pertains to a manufacturing activity.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Job, j</th> <th>Processing time, t_j</th> <th>Weight W_j</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>7</td> <td>1</td> </tr> <tr> <td>2</td> <td>18</td> <td>2</td> </tr> <tr> <td>3</td> <td>6</td> <td>1</td> </tr> <tr> <td>4</td> <td>8</td> <td>2</td> </tr> <tr> <td>5</td> <td>12</td> <td>3</td> </tr> </tbody> </table> <p>Determine the sequence which will minimize the weighted mean flow time of the problem. Also find the weighted mean flow time.</p>	Job, j	Processing time, t_j	Weight W_j	1	7	1	2	18	2	3	6	1	4	8	2	5	12	3	CO3	PO2	10						
Job, j	Processing time, t_j	Weight W_j																											
1	7	1																											
2	18	2																											
3	6	1																											
4	8	2																											
5	12	3																											
	b)	Consider the following 3 machines and 5 jobs flow shop problem. Check whether Johnsons rule can be extended to this problem. If so what is the optimum schedule and the corresponding make span?	CO2	PO1	10																								
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Job, j</th> <th>Machine 1</th> <th>Machine 2</th> <th>Machine 3</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>11</td> <td>10</td> <td>12</td> </tr> <tr> <td>2</td> <td>13</td> <td>8</td> <td>20</td> </tr> <tr> <td>3</td> <td>15</td> <td>6</td> <td>15</td> </tr> <tr> <td>4</td> <td>12</td> <td>7</td> <td>19</td> </tr> <tr> <td>5</td> <td>20</td> <td>9</td> <td>7</td> </tr> </tbody> </table>	Job, j	Machine 1	Machine 2	Machine 3	1	11	10	12	2	13	8	20	3	15	6	15	4	12	7	19	5	20	9	7			
Job, j	Machine 1	Machine 2	Machine 3																										
1	11	10	12																										
2	13	8	20																										
3	15	6	15																										
4	12	7	19																										
5	20	9	7																										
OR																													
5	a)	<p>Consider the following single machining scheduling problem:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Job (j)</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> </thead> <tbody> <tr> <td>Processing time (t_j)</td> <td>10</td> <td>8</td> <td>8</td> <td>7</td> <td>12</td> <td>15</td> </tr> <tr> <td>Due date (d_j)</td> <td>15</td> <td>10</td> <td>12</td> <td>11</td> <td>18</td> <td>25</td> </tr> </tbody> </table> <p>Determine the sequence which will minimize the maximum lateness (L_{max}). Also, determine L_{max} with respect to the optimal sequence.</p>	Job (j)	1	2	3	4	5	6	Processing time (t_j)	10	8	8	7	12	15	Due date (d_j)	15	10	12	11	18	25	CO3	PO2	08			
Job (j)	1	2	3	4	5	6																							
Processing time (t_j)	10	8	8	7	12	15																							
Due date (d_j)	15	10	12	11	18	25																							

	b)	Consider the following two machines and six jobs flow shop-scheduling problem. Using Johnson's algorithm, obtain the optimal sequence, which will minimize the makespan.	CO2	PO1	08																					
		<table border="1"> <thead> <tr> <th>Job</th> <th>Machine 1</th> <th>Machine 2</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>5</td> <td>4</td> </tr> <tr> <td>2</td> <td>2</td> <td>3</td> </tr> <tr> <td>3</td> <td>13</td> <td>14</td> </tr> <tr> <td>4</td> <td>10</td> <td>1</td> </tr> <tr> <td>5</td> <td>8</td> <td>9</td> </tr> <tr> <td>6</td> <td>12</td> <td>11</td> </tr> </tbody> </table>	Job	Machine 1	Machine 2	1	5	4	2	2	3	3	13	14	4	10	1	5	8	9	6	12	11			
Job	Machine 1	Machine 2																								
1	5	4																								
2	2	3																								
3	13	14																								
4	10	1																								
5	8	9																								
6	12	11																								
	c)	Write a brief note on CDS Heuristics in scheduling	CO1	-	04																					
		UNIT - IV																								
6	a)	Compare and contrast between Push and pull method of material flow with suitable examples	CO3	PO2	10																					
	b)	Explain in brief about the following <ul style="list-style-type: none"> i. Uniform workstation loads ii. Kaizen iii. Standardized components iv. Line flows 	CO1	-	10																					
		UNIT - V																								
7	a)	With examples examine the 5S principles as applied to a shop floor of a production unit	CO3	PO2	10																					
	b)	Write short notes on the following <ul style="list-style-type: none"> i. Poke- t6Yoke ii. 2 Bin Kanban system iii. Value stream Mapping iv. Line Balancing 	CO2	PO1	10																					
