

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Industrial Engineering and Management

Duration: 3 hrs.

Course Code: 23IM6PCLOM / 22IM6PCLOM

Max Marks: 100

Course: Lean and Operations Management

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Explain the historical development of Operations Management and its evolution into modern practices.	<i>CO1</i>	<i>PO1</i> <i>PO12</i>	10	
	b)	What are the key principles of Lean Manufacturing, and how do they differ from traditional manufacturing systems?	<i>CO1</i>	<i>PO1</i> <i>PO2</i> <i>PO12</i>	10	
OR						
2	a)	Discuss the difference between manufacturing and non-manufacturing systems and how operations management applies to both.	<i>CO1</i>	<i>PO1</i> <i>PO2</i> <i>PO6</i>	10	
	b)	Define the types of waste in Lean Manufacturing and how waste elimination contributes to value creation.	<i>CO1</i>	<i>PO1</i> <i>PO2</i>	10	
			UNIT - II			
3	a)	Describe the different types of forecasting methods: Opinion and Judgmental methods, and Time Series methods.	<i>CO2</i>	<i>PO1</i> <i>PO2</i> <i>PO4</i>	10	
	b)	A company manufactures bicycles and wants to use Material Requirements Planning (MRP) to determine the number of parts needed for production. Each bicycle consists of: 1 frame, 2 wheels, 1 handlebar, 1 seat. The company has received an order for 100 bicycles to be delivered in week 4. The lead times for each component are: Frame: 2 weeks, Wheel: 1 week, Handlebar: 1 week, Seat: 1 week, The company currently has the following inventory: Frames: 10 in stock, Wheels: 50 in stock, Handlebars: 20 in stock, Seats: 15 in stock. Determine how many parts should be ordered and when.	<i>CO2</i>	<i>PO1</i> <i>PO2</i> <i>PO4</i> <i>PO5</i>	10	
OR						

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Explain Aggregate Planning and the methods used for it.	CO2	PO1 PO2	10																
		b)	A small business wants to predict the future sales of its product using linear regression analysis. The past sales data for five months is as follows:	CO2	PO1 PO2 PO4 PO5	10																
			<table border="1"> <tr> <td>Month</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>Sales(units)</td><td>50</td><td>60</td><td>65</td><td>70</td><td>80</td></tr> </table>	Month	1	2	3	4	5	Sales(units)	50	60	65	70	80							
Month	1	2	3	4	5																	
Sales(units)	50	60	65	70	80																	
			UNIT - III																			
5	a)		A flow shop has three jobs (P, Q, R) to be processed on three machines (M1, M2, M3). The processing times (in hours) are given below:	CO3	PO1 PO2 PO4 PO5	10																
			<table border="1"> <tr> <td>Job</td><td>Machine M1</td><td>Machine M2</td><td>Machine M3</td></tr> <tr> <td>P</td><td>2</td><td>3</td><td>4</td></tr> <tr> <td>Q</td><td>3</td><td>2</td><td>1</td></tr> <tr> <td>R</td><td>1</td><td>4</td><td>2</td></tr> </table> <p>Determine the optimal sequence of jobs to minimize the total completion time using the CDS algorithm.</p>	Job	Machine M1	Machine M2	Machine M3	P	2	3	4	Q	3	2	1	R	1	4	2			
Job	Machine M1	Machine M2	Machine M3																			
P	2	3	4																			
Q	3	2	1																			
R	1	4	2																			
	b)		A job shop has three jobs (A, B, and C) to be processed on two machines (M1 and M2). The processing times (in hours) are given below:	CO3	PO1 PO2 PO4 PO5	10																
			<table border="1"> <tr> <td>Job</td><td>Machine M1</td><td>Machine M2</td></tr> <tr> <td>A</td><td>3</td><td>2</td></tr> <tr> <td>B</td><td>4</td><td>1</td></tr> <tr> <td>C</td><td>2</td><td>3</td></tr> </table> <p>Determine the optimal sequence of jobs to minimize the total completion time using the Johnson's rule.</p>	Job	Machine M1	Machine M2	A	3	2	B	4	1	C	2	3							
Job	Machine M1	Machine M2																				
A	3	2																				
B	4	1																				
C	2	3																				
			OR																			
6	a)		A machine shop has four jobs (A, B, C, and D) that need to be processed on a single machine. The processing times (in hours) and due dates are given below:	CO3	PO1 PO2 PO4 PO5	10																
			<table border="1"> <tr> <td>Job</td><td>Processing Time (hours)</td></tr> <tr> <td>A</td><td>6</td></tr> <tr> <td>B</td><td>8</td></tr> <tr> <td>C</td><td>7</td></tr> <tr> <td>D</td><td>3</td></tr> </table> <p>Determine the job sequence using Shortest Processing Time (SPT) rule to minimize mean flow time. Also calculate the mean flow time.</p>	Job	Processing Time (hours)	A	6	B	8	C	7	D	3									
Job	Processing Time (hours)																					
A	6																					
B	8																					
C	7																					
D	3																					
	b)		Differentiate between backward scheduling and forward scheduling with example.	CO3	PO1 PO2	10																
			UNIT - IV																			
7	a)		Describe the main characteristics of a Just-in-Time (JIT) operation.	CO4	PO1 PO12	10																

		b)	What are the 5S principles, and how do they contribute to a lean environment?	CO4	PO1 PO2	10
			OR			
8	a)		Explain the Pull Method of material flow and its advantages over the Push Method.	CO4	PO1 PO2	10
	b)		Explain standard work, visual control, and quality at the source in Lean Manufacturing.	CO4	PO1 PO2 PO3	10
			UNIT - V			
9	a)		What is Preventive Maintenance? How is it different from Reactive Maintenance?	CO5	PO1 PO2	10
	b)		What is Poka-Yoke? Give examples to illustrate its application.	CO5	PO2	10
			OR			
10	a)		Explain Production Leveling (Heijunka) and how it benefits operations management.	CO5	PO1 PO2 PO12	10
	b)		What is Value Stream Mapping (VSM)? Explain the steps involved in creating a VSM.	CO5	PO1 PO2 PO3 PO5	10
