

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Industrial Engineering & Management

Duration: 3 hrs.

Course Code: 22IM6PCSMA

Max Marks: 100

Course: Simulation Modelling and Analysis

- Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of Statistical tables permitted.

		UNIT - I	CO	PO	Marks																																																
1	a)	List and Explain with an example principles used in Modeling	CO1	PO1	10																																																
	b)	Name entities, attributes, activities, events, and state variables for the following systems: (i) University library (ii) Bank (iii) Call center (iv) Hospital blood bank (v) Departmental store	CO1	PO1	10																																																
		OR																																																			
2	a)	List and explain the necessary steps involved in a simulation with a flow chart	CO1	PO1	10																																																
	b)	Suppose the duration of activities are non-deterministic with the following probability distribution:	CO2	PO1	10																																																
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Activity</th> <th>Days</th> <th>Probability</th> </tr> <tr> <td>1-2</td> <td>1</td> <td>0.2</td> </tr> <tr> <td></td> <td>4</td> <td>0.5</td> </tr> <tr> <td></td> <td>8</td> <td>0.3</td> </tr> <tr> <td>1-3</td> <td>2</td> <td>0.3</td> </tr> <tr> <td></td> <td>4</td> <td>0.5</td> </tr> <tr> <td></td> <td>7</td> <td>0.2</td> </tr> <tr> <td>2-4</td> <td>2</td> <td>0.3</td> </tr> <tr> <td></td> <td>4</td> <td>0.3</td> </tr> <tr> <td></td> <td>6</td> <td>0.4</td> </tr> <tr> <td>1-4</td> <td>3</td> <td>0.3</td> </tr> <tr> <td></td> <td>6</td> <td>0.4</td> </tr> <tr> <td></td> <td>8</td> <td>0.3</td> </tr> <tr> <td>4-5</td> <td>2</td> <td>0.2</td> </tr> <tr> <td></td> <td>2</td> <td>0.2</td> </tr> <tr> <td></td> <td>6</td> <td>0.6</td> </tr> </table> <p>Simulate the duration of the project for 5 times and estimate the chances of various critical paths. What is the average duration of the project?</p>	Activity	Days	Probability	1-2	1	0.2		4	0.5		8	0.3	1-3	2	0.3		4	0.5		7	0.2	2-4	2	0.3		4	0.3		6	0.4	1-4	3	0.3		6	0.4		8	0.3	4-5	2	0.2		2	0.2		6	0.6			
Activity	Days	Probability																																																			
1-2	1	0.2																																																			
	4	0.5																																																			
	8	0.3																																																			
1-3	2	0.3																																																			
	4	0.5																																																			
	7	0.2																																																			
2-4	2	0.3																																																			
	4	0.3																																																			
	6	0.4																																																			
1-4	3	0.3																																																			
	6	0.4																																																			
	8	0.3																																																			
4-5	2	0.2																																																			
	2	0.2																																																			
	6	0.6																																																			
		UNIT - II																																																			
3	a)	What is Time advance algorithm? Briefly Explain the steps involved in the algorithm.	CO1	PO1	10																																																
	b)	The sequence of numbers 0.45, 0.37, 0.89, 0.11 and 0.86 has been generated. Use the Kolmogorov-Smirnov test with $\alpha = 10\%$ to learn whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected.	CO3	PO2	10																																																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR																																											
4	a)	Based on the Runs above and below the mean, determine whether the following sequence of 40 numbers is such that the hypothesis of independence can be rejected where $\alpha = 10\%$	<i>CO3</i>	<i>PO2</i>	10																																								
		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td>0.382</td><td>0.101</td><td>0.596</td><td>0.99</td><td>0.495</td><td>0.958</td><td>0.014</td><td>0.407</td><td>0.863</td><td>0.198</td></tr> <tr><td>0.245</td><td>0.045</td><td>0.032</td><td>0.495</td><td>0.220</td><td>0.017</td><td>0.285</td><td>0.343</td><td>0.554</td><td>0.926</td></tr> <tr><td>0.372</td><td>0.356</td><td>0.910</td><td>0.466</td><td>0.426</td><td>0.304</td><td>0.976</td><td>0.807</td><td>0.991</td><td>0.627</td></tr> <tr><td>0.952</td><td>0.053</td><td>0.705</td><td>0.817</td><td>0.973</td><td>0.466</td><td>0.300</td><td>0.750</td><td>0.351</td><td>0.797</td></tr> </table>	0.382	0.101	0.596	0.99	0.495	0.958	0.014	0.407	0.863	0.198	0.245	0.045	0.032	0.495	0.220	0.017	0.285	0.343	0.554	0.926	0.372	0.356	0.910	0.466	0.426	0.304	0.976	0.807	0.991	0.627	0.952	0.053	0.705	0.817	0.973	0.466	0.300	0.750	0.351	0.797			
0.382	0.101	0.596	0.99	0.495	0.958	0.014	0.407	0.863	0.198																																				
0.245	0.045	0.032	0.495	0.220	0.017	0.285	0.343	0.554	0.926																																				
0.372	0.356	0.910	0.466	0.426	0.304	0.976	0.807	0.991	0.627																																				
0.952	0.053	0.705	0.817	0.973	0.466	0.300	0.750	0.351	0.797																																				
	b)	Use the linear congruential method to generate a sequence of three two digit random integers. Let $x_0 = 27$, $a = 8$, $c = 47$ and $m = 100$	<i>CO2</i>	<i>PO1</i>	06																																								
	c)	Explain pseudo random numbers and also list necessary properties required for generating pseudo random numbers	<i>CO1</i>	<i>PO1</i>	04																																								
		UNIT - III																																											
5	a)	Shop floor manager wants to develop a model to help scheduling of jobs in the shop floor. He has evaluated the completion times for all the different types of jobs. For one particular job, the times to completion can be represented by the following distribution function: $f(x) = \begin{cases} \frac{1}{4}, & 1 \leq x \leq 3 \\ \frac{1}{2}, & 3 \leq x \leq 4 \\ 0, & \text{Otherwise} \end{cases}$ As an analyst develop a process generator for this distribution using the inverse transformation method.	<i>CO3</i>	<i>PO2</i>	10																																								
	b)	Derive step by step procedure to generate random variates by method of inverse transformation for exponential distribution and also determine 5 values of X when mean value = 1.2.	<i>CO2</i>	<i>PO1</i>	10																																								
		OR																																											
6	a)	Times to failure for an ATM have been found to be randomly distributed with a weibull distribution with scale parameter = 10, shape parameter = 2 and location parameter = 0. Generate Five values of X for the weibull distribution. Choose random numbers : 0.25, 0.68, 0.78, 0.10 and 0.01	<i>CO2</i>	<i>PO1</i>	07																																								
	b)	Regular maintenance of a production routine has been found to vary and has been modeled as a normally distributed random variable with mean 33 minutes and variance 4 minutes ² . Generate five random maintenance times from the given distribution	<i>CO2</i>	<i>PO1</i>	07																																								
	c)	Derive step by step procedure to generate random variates by method of inverse transformation for Uniform distribution	<i>CO2</i>	<i>PO1</i>	06																																								

		UNIT – IV																													
7	a)	<p>Records pertaining to monthly customer complaints for an XYZ product were studied by customer care department. The values for the past 100 months were as follows:</p> <table border="1"> <tr> <td>Customer complaints (X_i)</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td></tr> <tr> <td>frequency</td><td>12</td><td>10</td><td>19</td><td>17</td><td>X</td><td>8</td><td>7</td><td>5</td><td>5</td><td>3</td><td>3</td><td>1</td></tr> </table> <p>Use Chi- square test for hypothesis that the data pattern follows Poisson distribution, assume level of significance = 5%.</p>	Customer complaints (X_i)	0	1	2	3	4	5	6	7	8	9	10	11	frequency	12	10	19	17	X	8	7	5	5	3	3	1	CO3	PO2	14
Customer complaints (X_i)	0	1	2	3	4	5	6	7	8	9	10	11																			
frequency	12	10	19	17	X	8	7	5	5	3	3	1																			
	b)	<p>Explain the following with respect to simulation models:</p> <ul style="list-style-type: none"> (i) Verification (ii) Validation and (iii) Calibration 	CO1	PO1	06																										
		OR																													
8	a)	Briefly explain Naylor and Finger three – step approach for validation process	CO1	PO1	06																										
	b)	<p>10 inter arrival times (minutes) are collected over the following 100-minute interval.</p> <table border="1"> <tr> <td>0.54</td><td>0.53</td><td>2.44</td><td>2.04</td><td>3.0</td><td>0.3</td><td>2.54</td><td>0.52</td><td>1.89</td><td>1.53</td></tr> </table> <p>Test whether the data follows exponentially distributed? assume level of significance = 5%.</p>	0.54	0.53	2.44	2.04	3.0	0.3	2.54	0.52	1.89	1.53	CO2	PO1	10																
0.54	0.53	2.44	2.04	3.0	0.3	2.54	0.52	1.89	1.53																						
	c)	Explain the necessary steps involved in simulation when models does not have necessary data.	CO1	PO1	04																										
		UNIT – V																													
9	a)	Explain the role of Simulation in Manufacturing systems. Also list objectives of simulating manufacturing systems.	CO2	PO2	10																										
	b)	<p>Write short notes on:</p> <ul style="list-style-type: none"> (i) Constrained transporters (ii) Common Issues in manufacturing system simulations 	CO1	PO1	10																										
		OR																													
10	a)	Explain the need of Simulation modeling & Analysis in Manufacturing systems.	CO1	PO1	10																										
	b)	<p>Write short notes on:</p> <ul style="list-style-type: none"> (i) Performance Measures for manufacturing systems (ii) Types of Material Handling equipments 	CO1	PO1	10																										
