

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS3PCCOA / 22IS3PCCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat diagram, illustrate how CPU and memory interact in executing an instruction by mentioning the purpose of each special purpose registers involved.	CO1		8
	b)	With an example, explain any four addressing modes. Provide an assembly language program to add n numbers with the use of indirect addressing mode.	CO2	PO1	8
	c)	Convert the following pair of decimal number to 5 bit signed 2's complement binary number and perform addition. State whether overflow occurs or not in each case. i) -10 and +3 ii) +14 and -12 iii) +13 and +11 iv) - 9 and +14	CO2	PO1	4
OR					
2	a)	State and explain the performance equation?	CO1		5
	b)	Sketch the internal organization of CPU out with its functionalities and block diagram.	CO1		5
	c)	Registers R1 and R2 of a computer contain the decimal values 1300 and 5600. Identify the type of addressing modes and find the effective address of the memory operand in each of the following instructions? (a) Load 30(R1),R5 (b) Move #4000,R5 (c) Store R5,20(R1,R2) (d) Add -(R2),R5 (e) Subtract (R1)+,R5	CO2	PO1	10
UNIT - II					
3	a)	With a neat diagram, illustrate the working of generating the control sequence using hardwired approach.	CO1		10
	b)	Write complete control sequence for execution of the following instructions using single bus organization. ADD(R3)+,R1 ii) ADD#NUM,R1	CO3	PO2	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	With neat diagram, illustrate three bus organization and write a control sequence for the instruction ADD R4,R5,R6.	CO3	PO2	10
		b)	Interpret the steps involved in Fetching a Word from Memory with a neat diagram.	CO2	PO1	10
			UNIT - III			
	5	a)	Perform multiplication for the given signed numbers using Booth's algorithm and Fast-Bit pair recoding method: • Multiplicand: -11 and Multiplier: +27 Also explain why bit pair recoding algorithm achieves faster multiplication.	CO2	PO1	10
		b)	Perform restoring division algorithm for the dividend 7 and the divisor 3 with steps.	CO2	PO1	10
			OR			
	6	a)	With a neat diagram, explain the working of a sequential circuit binary multiplier. Perform $(-13) \times (+11)$ using sequential multiplication.	CO2	PO1	10
		b)	Design a Combinatorial Array Multiplier for 4×4 (No of bits for multiplicand and multiplier=4)	CO2	PO1	10
			UNIT - IV			
	7	a)	Define an interrupt? Illustrate about simultaneous request handling by the processor with a neat sketch	CO3	PO2	10
		b)	Illustrate the program controlled I/O with a program that reads a line from the keyboard, stores it in the memory buffer and echoes it back to the display. Identify the disadvantage of the same	CO2	PO1	10
			OR			
	8	a)	What is DMA? Draw the block diagram for DMA controller and explain about DMA transfer in a computer	CO1		10
		b)	Illustrate with a neat diagram, the two approaches of bus arbitration with a neat diagram.	CO2	PO1	10
			UNIT - V			
	9	a)	Consider a direct mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find- i) Number of bits in tag ii) Tag directory size	CO3	PO2	10
		b)	Define Hazards and its types.	CO1		4
		c)	Illustrate the associative mapping technique with its advantages and disadvantages.	CO2	PO1	6
			OR			
	10	a)	Draw the neat sketch of memory hierarchy and explain the need of cache memory?	CO1		6
		b)	Interpret the hardware organization and instruction execution steps for a 4-stage pipelined processor	CO2	PO1	6
		c)	Explain about direct and set associative map technique in cache.	CO2	PO1	8
