

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS3PCCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List the steps required to execute the given instruction ADD LOCA, LOCB in terms of transfers between the processor and the memory with a neat diagram.	CO2	PO1	10
	b)	Generate 5-bit, signed, 2's complement binary representations for the provided pairs of decimal numbers and perform addition. Also, determine whether overflow occurs in each case. i) -4 and +4 ii)+7 and +7 iii) -6 and -4 iv)-3 and -5 v)+5 and +4	CO2	PO1	05
	c)	Write an assembly language program that can evaluate expression $Y=(A-B)/(C+D \times E)$ using two-address and one-address instruction type.	CO2	PO1	05
UNIT - II					
2	a)	With a neat diagram interpret the process of control signals generation to fetch a word from memory for the register Memory Data Register.	CO1		07
	b)	Provide the control sequence for an instruction Add R4, R5, R6 with three bus organization and explain the same.	CO2	PO1	06
	c)	Summarize the generation of control signals by control unit through hardwired control approach with a detailed diagram.	CO1		07
OR					
3	a)	Identify the advantage of multiple bus organization over the single bus organization and explain the architecture of multiple bus organization with a neat diagram.	CO1		07
	b)	Write the sequence of control steps required for the single bus structure in each of the following instructions: a) Add the immediate number NUM to register R1. b) Add the contents of memory location NUM to register R1.	CO2	PO1	08
	c)	Provide an example of control sequence steps for a unconditional branch instruction.	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - III				
4	a)	Perform multiplication using Booth's algorithm and Bit-Pair Recoding algorithm for the following: i)Multiplicand: +23 and Multiplier: -10 ii) Multiplicand: +15 and Multiplier: +15		CO2	PO1	08
	b)	Analyse the sequential binary multiplier circuit for unsigned numbers with a neat diagram		CO3	PO2	06
	c)	Solve $25 \div 15$ using non-restoring division algorithm		CO2	PO1	06
		UNIT - IV				
5	a)	Specify, how interrupts are useful for the given scenario below: Consider a task that requires some computations to be performed and the results to be printed on a line printer. The program consists of two routines COMPUTE and PRINT. Assume that COMPUTE produces a set of n lines of output, that is to be printed by the PRINT routine.		CO2	PO1	06
	b)	Provide the solution by considering priority and daisy chain schemes, to resolve the issue of simultaneous arrivals of interrupt requests		CO1		08
	c)	Interpret the timing diagram for synchronous bus to perform input data transfer with propagation delays.		CO3	PO2	06
		OR				
6	a)	Describe the Distributed Arbitration process in the selection of the next bus master. With Distributed Arbitration process identify the device that gains the bus mastership for the following with a neat diagram: Consider two devices A and B having ID's as 5 and 6, respectively are requesting the use of bus. The pattern that appears on arbitration lines is 0111.		CO3	PO2	08
	b)	Design a timing diagram to perform data transfer using handshake protocol during an input operation		CO3	PO2	08
	c)	Specify how exceptions are used in the case of debuggers		CO1		04
		UNIT - V				
7	a)	Provide the mapping technique that is a combination of direct and associative mapping techniques. Clarify the same with an example.		CO2	PO1	08
	b)	Illustrate structural hazard with an example. Suggest a solution to avoid structural hazard in a pipelining concept.		CO3	PO2	07
	c)	Define Locality of reference property and its types with reference to cache mechanism.		CO1		05
